簡易檢索 / 詳目顯示

研究生: 王凱民
Kai-Ming Wang
論文名稱: 具高精度自我校準脈衝擴展器之時間至數位轉換器
A Highly Accurate Time-to-Digital Converter Based on Self-Calibrated Pulse Stretcher
指導教授: 陳伯奇
Poki Chen
口試委員: 劉深淵
Shen-Iuan Liu
曹恆偉
Hen-Wai Tsao
陳巍仁
Wei-Zen Chen
王秀仁
Show-Ran Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 133
中文關鍵詞: 時間至數位轉換器脈衝擴展器雙斜率法
外文關鍵詞: Time-to-Digital Converter(TDC), Pulse Stretcher, Dual Slope
相關次數: 點閱:252下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個無量測範圍限制、具自我校準脈衝擴展器之高精度時間至數位轉換器(Time-to-digital converter,簡稱TDC),希望藉由自動校準的方式,來降低環境溫度變異、製程參數變異以及工作電壓的改變所造成量測上的誤差,大幅提高時間至數位轉換器之準確度。
    本電路的解析度高達19.53ps,以TSMC 0.35um 2P4M製程實現,晶片面積不含輸入/輸出墊(I/O Pad)為0.5mm2。利用單擊觸發方式,範圍在0.4ns~11ns且量測間距為400ps的情形下,測得的INL及DNL只有+0.5LSB~-0.5LSB和+0.87LSB~-0.8LSB。而在量測頻率為0.2/sec之情形下,其消耗功率為19.8mW。


    A highly accurate time-to-digital converter (TDC) based on self-calibrated pulse stretcher has been presented to own a theoretically unlimited input range. Through self calibration, the inaccuracy caused by process, voltage and temperature variations can be eliminated to enhance the performance of the TDC substantially.
    The test chips have been fabricated in a TSMC 0.35-um 2P4M standard digital CMOS process. The resolution of the proposed TDC is measured to be as fine as 19.53ps with a reference clock of 100MHz and the chip area is merely 0.78mm0.645mm, excluding the I/O pads. By true single shot measurements, the measured INL and DNL are within +0.5LSB~-0.5LSB and +0.87LSB~-0.8LSB for 0.4ns to 11ns input range from with 400ps steps. The power consumption is 19.8mW at 0.2 samples/s measurement rate.

    目 錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 序論 1 1.1 研究動機 1 1.2 內容編排方式 4 第二章 時間至數位轉換器 5 2.1 時間至數位轉換器簡介 5 2.2 計數器法之時間至數位轉換器 6 2.3 游標卡尺法之時間至數位轉換器 9 2.4 脈衝縮減法之時間至數位轉換器 14 2.4.1 線性脈衝縮減法 14 2.4.2 循環式脈衝縮減法 16 2.4.3 非均質與均質之脈衝縮減延遲線 18 2.5 起始-停止原理之之時間至數位轉換器 20 2.5.1 類比至數位轉換器法 21 2.5.2 雙斜率法(Dual Slope) 24 第三章 具高精度自我校準脈衝擴展器之時間至數位轉換器 26 3.1 脈衝擴展法之時間至數位轉換器 27 3.2 具高精度自我校準脈衝擴展器之時間至數位轉換器 30 3.3 時間至脈衝控制電路 31 3.3.1 時間至脈衝控制電路介紹 31 3.3.2 介穩態 34 3.4 脈衝擴展器(內插器) 37 3.5 具自我校準之脈衝擴展器 41 3.5.1 具自我校準之脈衝擴展器工作原理 41 3.5.2 內插器開關切換之誤差 45 3.5.3 放電電容間之寄生耦合電容 51 3.5.3.1 放電電容間之寄生耦合電容之解決途徑 52 3.5.4 有限的電流源輸出阻抗 53 3.5.5 循序逼近暫存器(SAR) 55 3.5.6 比較器 58 3.5.6.1 比較器之概論 58 3.5.6.2 比較器原理說明 59 3.5.6.3 比較器之架構選擇 63 3.5.7 計數器 66 第四章 電路模擬與晶片佈局 67 4.1 設計流程與考量 67 4.2 具高精度自我校準脈衝擴展器之時間至數位轉換器模擬 與驗證 70 4.2.1 時間至脈衝控制電路模擬 71 4.2.2 循序逼近暫存器(SAR)模擬 73 4.2.3 具自我校準之脈衝擴展器模擬 75 4.2.4 比較器模擬 79 4.2.5 計數器模擬 82 4.2.6 時間至數位轉換器系統模擬 83 4.3 晶片佈局 88 第五章 量测結果 90 5.1 測試環境 90 5.2 量测結果 97 第六章 結論與未來展望 110 6.1 晶片效能比較 110 6.2 未來展望 112 參考文獻 114

    參考文獻
    [1] R.B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg and P.T. Balsara, “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 3, pp, 220-224, MAR. 2006.
    [2] R.W. Necoechea, “High performance monolithic verniers for VLSI automatic test equipment,” Proceedings International Test Conference, pp. 422-430, Sept. 1992.
    [3] T. Otsuji, “A picosecond-accurary,700-Mhz range si-bipolar time interval counter LSI,” IEEE Journal of Solid-State Circuit, vol. 28, pp. 941-947, Sept. 1993.
    [4] R. Nutt, “Digital time inervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, 1968.
    [5] M.S. Gobrics, J. Kelly, K.M. Roberts and R.L. Summer, “A high resolution multihit time to digital converter integrated circuit,” IEEE Transaction on Nuclear Science, vol. 44, pp. 379-384, June. 1997.
    [6] N. Abaskharoun, M. Hafed, and G.W. Roberts, “Strategies for on-chip sub-nanosecond signal capture and timing measurements,” International Symposium on Circuits and Systems, vol. 4, pp. 174-177, May 2001.
    [7] P. Dudek, S. Szczepanski and J.V. Hatfield, ”A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line” IEEE Journal of Solid-State Circuits, vol. 35, no 2, pp. 240-247, Feb. 2000.
    [8] T. Rahkonen and J. Kostamovaara, “The use of stabilized CMOS delay line for the digitization of short time intervals,” IEEE Journal of Solid-State Circuits, vol. 28, pp. 887-894, Aug.1993.
    [9] C. T. Gray, W. Liu, W. A. M. Van Noije, T. A. Hughes Js and R. K. Cavin III, ”A sampling technique and its CMOS implementation with 1 Gbs bandwidth and 25 ps resolution,“ IEEE Journal of Solid-State Circuits, vol. 29, pp. 340-349, Mar. 1994.
    [10] P. Dudek, S. Szczepanski, and J.V. Hatfield, ”A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE Journal of Solid-State Circuits, vol. 35, Issue 2, pp. 240-247, Feb. 2000.
    [11] V. Ramakrishnan and P.T. Balsara, “A wide-range, high-resolution, compact, CMOS time to digital converter” IEEE Proceedings of the 19th International Conference on VLSI Design, Jan. 2006.
    [12] Poki Chen, Jia-Chi Zheng and Chun-Chi Chen, “A Monolithic Vernier-Based Time-to-Digital Converter with Dual PLLs for Self-Calibration,” IEEE Custom Integrated Circuits Conference, pp. 321-324, Sept. 2005.
    [13] Poki Chen, Chun-Chi Chen, Jia-Chi Zheng and You-Sheng Shen, “A PVT Insensitive Vernier-Based Time-to-Digital Converter with Extended Input Range and High Accuracy,” IEEE Transaction on Nuclear Science, vol. 54, no. 2, Apr. 2007.
    [14] E. Raisanen-Ruotsalainen, T. Rahkonen and J. Kostamovaara, “A low-power CMOS time-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 30, Issue 9, pp. 984-990, Sept. 1995.
    [15] Poki Chen, Shen-Iuan Liu and Jingshown Wu, ”A low power high accuracy CMOS Time-to-Digital Converter circuit and system, ” IEEE Proceedings of International Symposium on Circuits and Systems, vol. 1, pp. 281-284, June 1997.
    [16] Poki Chen, Shen-Iuan Liu and Jingshown Wu, “Highly accurate cyclic CMOS Time-to-Digital Converter with extremely low power consumption, ” IEEE Electronics Letters, vol. 33, Issue 10, pp. 858-860, May 1997.
    [17] Wei Chang, Mao-Hsing Chiang and Poki Chen, “A Highly Accurate Cyclic CMOS Time to Digital Converter with Temperature Compensation”, The 14th VLSI Design/CAD Symposium, Aug. 2003.
    [18] E. Raisanen-Ruosalainen, T. Rahkonen and J. Kostamovaara, “A BiCMOS time-to-digital converter with 30 ps resolution,” IEEE Proceedings of the International Symposium on Circuits and Systems, vol. 1, pp. 278-281, June. 1999.
    [19] E. Owen, “The Elimination of offset Errors in Dual-slope Analog-to Digital Converters,” IEEE Transactions on Circuits and Systems, vol. 27, Issue 2, pp. 137-141, Feb. 1980.

    [20] A. Mutoh and S. Nitta, “Noise immunity characteristics of dual-slope integrating analog-digital converters,” International Symposium on Electromagnetic Compatibility, pp. 622-625, May 1999.
    [21] E. Raisanen-Ruotsalainen, T. Rahkonen and J. Kostamovaara, ” A time digitizer with interpolation based on time-to-voltage conversion” Proceedings of the 40th Midwest Symposium on Circuits and Systems, vol. 1, pp. 197-200, Aug. 1997.
    [22] B.K. Swann, B.J. Blalock, L.G. Clonts, D.M. Binkley, J.M. Rochelle, E. Breeding and K.M. Baldwin, ”A 100-ps time-resolution CMOS time-to-digital converter for positron emission tomography imaging applications” IEEE Journal of Solid-State Circuits, vol. 39, Issue 11, pp. 1839-1852, Nov. 2004.
    [23] E. Raisanen-Ruotsalainen, T. Rahkonen and J. Kostamovaara, "An integrated time-to-digital converter with 30-ps single-shot precision,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1507-1510, Oct. 2000.
    [24] Kihyuk Sung and Lee-Sup Kim, “A high-resolution synchronous mirror delay using successive approximation register,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1997-2004, Nov. 2004.
    [25] A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” IEEE Electronics Letters, vol. 32, no. 12, pp. 1055-1057, June. 1996.
    [26] Jr. and H. Russell, “An improved successive-approximation register design for use in A/D converters, ” IEEE Transactions on Circuits and Systems I, vol. 25, Issue 7, pp. 550-554, Jul. 1978.
    [27] J. Kostamovaara and R. Myllylä, “Time-to-digital converter with an analog interpolation circuit,” Rev. Sci. Instrum., vol. 57, pp. 2880-2885, 1986.
    [28] Poki Chen, Chun-Chi Chen and You-Sheng Shen, “A Low Cost Low Power CMOS Time-to-Digital Converter Based on Pulse Stretching,” IEEE Transaction on Nuclear Science, vol. 53, no. 4, pp. 2215-2220, Aug. 2006.

    [29] Minkyu Song, Yongman Lee and Wonchan Kim, “A clock feedthrough reduction circuit for switched-current systems,“ IEEE Journal of Solid-State Circuits, vol. 28, no. 2, pp. 133-137, Feb. 1993.
    [30] M. Helfenstein and G.S. Moschytz, “Improved two-step clock-feedthrough compensation technique for switched-current circuits, “IEEE Transactions on Circuits and Systems II, vol. 45, no. 6, pp. 739-743, June. 1998.
    [31]Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001.
    [32] Jr. and H. Russell, “An improved successive-approximation register design for use in A/D converters, ” IEEE Transactions on Circuits and Systems I, vol. 25, Issue 7, pp. 550-554, Jul. 1978.
    [33] 林志偉,“類比式延遲鎖定迴路之設計與製作,” 國立台灣大學電機工程學研究所碩士論文, 民國九十年六月。
    [34] Kihyuk Sung and Lee-Sup Kim, “A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1997-2004, Nov. 2004.
    [35] David A. Johns and Ken Martin, “Analog Integrated Circuit Design,” Wiley, Canada, 1997.
    [36] D.J. Allstot, ”A Precision Variable-Supply CMOS Comparator, ” IEEE Journal of Solid-State Circuits, vol. 17, Issue 6, pp. 1080-1087, Dec. 1982.
    [37] E. Allen and R. Holberg, “CMOS Analog Circuit Design second edition,” Oxford, New York, 2002.
    [38] G. Van Der Plas, J. Vandenbussche, W. Sansen, M. Steyaert and G.Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 1708-1717, Dec. 1999.
    [39] M. Vadipour, "Gradient error cancellation and quadratic error reduction in unary and binary D/A converters," IEEE Transactions on Circuits and Systems II, Vol. 50, pp. 1002-1007, Dec. 2003.
    [40] M.A.P. Pertijs, A. Bakker and Huijsing, J.H. “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” IEEE Proceedings of the International Symposium on Circuits and Systems, vol.1, pp. 368-371, May 2001.
    [41] Ming-Chan Weng and Jiin-Chuan Wu, ”A Temperature sensor in 0.6μm CMOS Technology, ” IEEE Asia Pacific CNF, pp. 116-119, Aug. 1999.
    [42]F. Bigongiari, R. Roncella, R. Saletti and P. Terreni, “A 250-ps timeresolution CMOS multihit time-to-digital converter for nuclear physics experiments,” IEEE Transaction on Nuclear Science, vol. 46, pp. 73–77, Apr. 1999.
    [43] Y. Arai and M. Ikeno, “A time digitizer CMOS gate-array with a 250 ps time resolution,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 212–220, Feb. 1996.
    [44]Chorng-Sii Hwang, Poki Chen and Hen-Wai Tsao, “A high-precision time-to-digital converter using a two-level conversion scheme,” IEEE Transaction on Nuclear Science, vol. 51, pp. 1349-1352, Aug. 2004.

    無法下載圖示 全文公開日期 2013/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE