簡易檢索 / 詳目顯示

研究生: 劉亭君
Ting-Chun Liu
論文名稱: 具數位校準之時間至數位轉換器
Time to Digital Converter With Digital Self-Calibration
指導教授: 陳伯奇
Poki Chen
口試委員: 楊湰頡
Rong-Jyi Yang
宋國明
none
陳科宏
Ke-Horng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: 數位鎖相迴路鎖相迴路時間至數位轉換器游標卡尺
外文關鍵詞: DPLL, PLL, TDC, Vernier
相關次數: 點閱:365下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現一個無量測範圍限制,以一組鎖相迴路為基礎且具數位校準之時間至數位轉換器。時間至數位轉換器的功用就是將待測時間轉換為數位形式輸出,目前被廣泛應用於許多量測儀器與電路中。本研究團隊於2005年提出一個具自我校準之游標卡尺法時間至數位轉換器,藉由鎖相廻路具有自我校準之能力,成功去除溫度、電壓與製程之變異,使該架構在不同環境因素下能保有相同解析度,但經實際量測,當待測時間較長時,會造成可觀的累積誤差。本論文延續先前架構,由鎖相迴路直接提供粗測電路穩定的計數時脈訊號,並提出一個新式數位鎖相迴路,透過連續趨近暫存器校準數位鎖相迴路輸出頻率,產生較高頻率提供給細測電路,採用游標卡尺法計數。鎖相廻路和新式數位鎖相迴路分別鎖定兩組相近頻率即可完成待測時間的粗測與細測,使得本時間至數位轉換器在不同環境因素下也能保有相同之解析度。本電路實現於TSMC 2P4M 0.35um製程,晶片面積0.55mm2。操作頻率在10 MHz時,電路解析度為24.8ps,功率消耗50.4mW。


    This paper proposes a time-to-digital converter (TDC) based on PLL which has digital calibration circuit and theoretically unlimited input range. The TDC is purposed to transform time interval into digital output and widely used in many instrumentation systems or equipments. Our research team was proposed a Vernier-based TDC in 2005. PLL is stabilized against process, voltage and temperature (PVT) variations by self-calibration. But when using the TDC in measuring long time period between two signals, there are many errors in this application. In order to improve these problems, we feed the reference clock of coarse counter from the voltage-controlled oscillator in PLL. A DPLL design using the new architecture is provided higher frequency to fine circuit. The DPLL architecture uses successive approximation register (SAR) to adjust its oscillation frequency. Since the proposed circuit utilizes PLL and DPLL for both coarse and fine measurements. It makes the excellent sensitivity reduction capability of the circuit. The proposed TDC has been implemented in 0.35um standard 2P4M CMOS technology and the chip size is 0.55mm2. In the 10MHz operation frequency, the TDC has 24.8ps timing resolution and power consumption is 50.4mW.

    第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 章節介紹 2 第2章 時間至數位轉換器 3 2.1 時間至數位轉換器應用 3 2.2 時間至數位轉換器簡介 5 2.2.1 計數器法之時間至數位轉換器 6 2.2.2 脈衝寬度拓展法之時間至數位轉換器 7 2.2.3 脈衝縮減法之時間至數位轉換器 9 2.2.4 現場可程式化閘陣列為主體之時間至數位轉換器 11 2.2.5 游標卡尺法之時間至數位轉換器 13 2.3 改良前時間至數位轉換器 17 2.4 新型時間至數位轉換器 20 第3章 鎖相迴路 26 3.1 相位頻率偵測器 27 3.1.1 三態相位頻率偵測器 27 3.1.2 傳統相位頻率偵測器 28 3.1.3 相位頻率偵測器的非理想特性 31 3.2 充電幫浦 34 3.2.1 充電幫浦的非理想特性 35 3.3 迴路濾波器 38 3.3.1 二階迴路濾波器系統分析 38 3.4 電壓控制振盪器 41 3.4.1 電壓控制振盪器性能指標 44 3.5 除頻器 46 3.5.1 除2電路 46 3.5.2 除3/4電路 46 3.5.3 除63電路 47 3.6 以MATLAB探討鎖相迴路穩定度及特性 49 第4章 新型數位鎖相迴路 52 4.1 新型數位鎖相迴路和鎖相迴路之比較 54 4.1.1 相位頻率偵測器方面 54 4.1.2 充電幫浦和迴路濾波器方面 54 4.1.3 振盪器方面 55 4.1.4 整體鎖相迴路方面 55 4.2 啟動電路和時間延遲電路 56 4.3 頻率偵測器 57 4.4 時間放大電路 58 4.5 可觸發式電流控制振盪器 59 4.6 除頻器 62 4.6.1 除64電路 62 4.7 控制單元 63 4.7.1 起始電路 63 4.7.2 連續趨近暫存器 64 4.8 相位比較器 67 第5章 佈局考量與模擬結果 69 5.1 佈局考量 69 5.2 鎖相迴路模擬結果 71 5.2.1 相位頻率偵測器模擬結果 72 5.2.2 充電幫浦模擬結果 73 5.2.3 壓控振盪器模擬結果 74 5.2.4 除頻器模擬結果 75 5.2.5 整體鎖相迴路模擬結果 76 5.3 新型數位鎖相迴路模擬結果 78 5.3.1 電流控制振盪器模擬結果 78 5.3.2 除頻器模擬結果 79 5.3.3 連續趨近暫存器模擬結果 80 5.4 時間至數位轉換器模擬結果 81 5.5 相位比較器模擬結果 83 第6章 結論與未來展望 84 6.1 結論 84 6.2 未來研究方向 86 參考文獻 87

    [1] A. H. Chan, and G. W. Roberts, “A Deep Sub-Micron Timing Measurement Circuit Using a Single-Stage Vernier Delay Line,” in proc. IEEE CICC, pp.77-80, May 2002.
    [2] W. Chang, M.-H. Chiang, and P. Chen, “A Highly Accurate Cyclic CMOS Time to Digital Converter with Temperature Compensation,” in proc. the 14th VLSI Design/CAD Symposium, pp.573-576, Aug. 2003.
    [3] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter,” IEEE Journal of Solid-State Circuits, vol.30, no.9, pp.984-990, Sept. 1995.
    [4] K. Maatta, and J. Kostamovaara, “A High-Precision Time-to-Digital Converter for Pulsed Time-of-Flight Laser Radar Applications,” IEEE Transactions on Instrumentation and Measurement, vol.47, no.2, pp.521-536, April 1998.
    [5] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “An Integrated Time-to-Digital Converter with 30-ps Single-Shot Precision,” IEEE Journal of Solid-State Circuits, vol.35, no.10, pp.1507-1510, Oct. 2000.
    [6] R. Nutt, “Digital Time Intervalometer,” Rev. Sci. Instrum, vol.39, no.9, pp.1342-1345, 1968.
    [7] P. Chen, C.-C. Chen, and Y.-S. Shen, “A Low-Cost Low-Power CMOS Time-to-Digital Converter Based on Pulse Stretching,” IEEE Transactions on Nuclear Science, vol.53, no.4, pp.2215-2220, Aug. 2006.
    [8] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter,” IEEE Journal of Solid-State Circuits, vol.30, no.9, pp.984-990, Sept. 1995.
    [9] P. Chen, S.-I. Liu, and J. Wu, “Highly Accurate Cyclic CMOS Time-to-Digital Converter with Extremely Low Power Consumption,” IEEE Electronics Letters, vol.33, no.10, pp.858-860, May 1997.
    [10] J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki, “Field-Programmable -Gate-Array-Based Time-to-Digital Converter with 200-ps Resolution,” IEEE Transactions on Instrumentation and Measurement, vol.46, no.1, pp.51-55, Feb. 1997.
    [11] J. Song, Q. An, and S. Liu, “A High-Resolution Time-to-Digital Converter Implemented in Field-Programmable-Gate-Arrays” IEEE Transactions on Nuclear Science, vol.53, no.1, pp.236-241, Feb. 2006.
    [12] T.-i. Otsuji, “A picosecond-accuracy, 700-MHz range, Si-bipolar time interval counter LSI,” IEEE Journal of Solid-State Circuits, vol.28, no.9, pp.941-947, Sept. 1993.
    [13] R. B. Stazewski, D. Leipold, C.-M. Hung, and P. T. Balsara, “TDC-Based Frequency Synthesizer for Wireless Applications,” IEEE RFIC Symposium, pp.215-218, June 2004.
    [14] P. Dudek, S. Szczepanski, and J. Hatfield, “A High-resolution CMOS Time-to-Digital Converter utilizing a Vernier Delay Line,” IEEE Journal of Solid-State Circuits, vol.35, no.2, pp.240-247, Feb. 2000.
    [15] V. Ramakrishnan, and P. T. Balsara, “A Wide-Range, High-Resolution, Compact, CMOS Time to Digital Converter,” in proc. the 19th IEEE VLSI Design, pp.6, Jan. 2006.
    [16] A. S. Yousif, and J. W. Haslett, “A Fine Resolution TDC Architecture for Next Generation PET Imaging,” IEEE Transactions on Nuclear Science, vol.54, no.5, pp.1574-1582, Oct. 2007.
    [17] P. Chen, J.-C. Zheng, and C.-C. Chen, “A Monolithic Vernier-Based Time-to-Digital Converter with Dual PLLs for Self-Calibration,” in proc. IEEE CICC, pp.321-324, Sept. 2005.
    [18] P. Chen, C.-C. Chen, J.-C. Zheng, and Y.-S. Shen, “A PVT Insensitive Vernier-Based Time-to-Digital Converter with Extended Input Range and High Accuracy,” IEEE Transactions on Nuclear Science, vol.54, no.2, pp.294-302, April 2007.
    [19] B. Razavi, “Design of analog CMOS integrated circuits,” McGRAW-HILL publishers, 2000.
    [20] S. Kim et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE Journal of Solid-State Circuits, vol.32, no.5, pp.691-700, May 1997.
    [21] J. G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques,” IEEE Journal of Solid-State Circuits, vol.31, pp.1723-1732, Nov. 1996.
    [22] T. S. Fiez, D. J. Allstot, G. Liang, and P. Lao, “Signal-Dependent Clock- Feedthrough Cancellation in Switched-Current Circuits,” in proc. IEEE Circuits and Systems, vol.2, pp.785-788, June 1991.
    [23] E. A. VIittoz, and O. Neyround, “A Low-Voltage CMOS Bandgap Reference,” IEEE Journal of Solid-State Circuits, vol.14, no.3, pp.573-579, Jun. 1979.
    [24] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A High-Accuracy Temperature Sensor with Second-Order Curvature Correction and Digital Bus Interface,” in proc. IEEE ISCAS, vol.1, pp.368-371, May 2001.
    [25] M. Tuthill, “A Switched-Current, Switched-capacitor Temperature Sensor in 0.6-um CMOS,” IEEE Journal of Solid-State Circuits, vol.33, no.7, pp. 117-1122, July 1998.
    [26] P. Larsson, “A 2-1600-MHz CMOS Clock Recovery PLL with Low-Vdd Capability,” IEEE Journal of Solid-State Circuits, vol.34, no.12, pp.1951-1960, Dec. 1999.
    [27] I.-C. Hwang, C. Kim, and S.-M. Kang, “A Self-Regulating VCO with Supply Sensitivity of 0.15%-Delay/1%-Supply,” IEEE International Solid-State Circuits Conference, vol.2, pp.140-141, Feb. 2002.
    [28] I.-C. Hwang, C. Kim, and S.-M. Kang, “A CMOS Self-regulating VCO with Low Supply Sensitivity,” IEEE Journal of Solid-State Circuits, vol.39, no.1, pp.42-48, Jan. 2004.
    [29] P. Larsson, “Measurement and Analysis of PLL Jitter caused by Digital Switching Noise,” IEEE Journal of Solid-State Circuits, vol.36, no.7, pp.1113-1119, July 2001.
    [30] A. Hajimiri, S. Limotyrakis, and T.H. Lee, “Jitter and Phase Noise in Ring Oscillators,” IEEE Journal of Solid-State Circuits, vol.34, no.6, pp.790-804, June 1999.
    [31] C.-Y. Yang, G.-K. Dehng, and S.-I. Liu, “High-Speed Divide-by-4/5 Counter for a Dual-Modulus Prescaler,” IEEE Electronics Letters, vol.33, no.20, pp. 691-1692, Sept. 1997.
    [32] J. Yuan, and C. Svensson, “High-Speed CMOS Circuit Technique,” IEEE Journal of Solid-State Circuits, vol.24, no.1, pp.62-60, Feb. 1989.
    [33] 劉深淵、楊清淵著,「鎖相迴路」,民國95年,滄海書局。
    [34] T. Wu, K. Mayaram, and Un-Ku Moon, “An On-chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE Journal of Solid-State Circuits, vol.42, no.4, pp.775-783, April 2007.
    [35] V. Kratyuk, P. Hanumolu, K. Ok, K. Mayaram, and U. Moon, “A digital PLL with a stochastic time-to-digital converter,” Symposium on VLSI Circuits, pp.31-32, Jun. 2006.
    [36] J. Lin et al., “A PVT tolerant 0.18MHz to 600MHz self-calibrated digital PLL in 90nm CMOS process,” IEEE International Solid-State Circuits Conference, vol.1, pp.488-541, Feb. 2004.
    [37] V. Kratyuk, P. K. Hanumolu, U. Moon, and K. Mayaram, “A Design Procedure for All-Digital Phase-Locked-Loops Based on a Charge-Pump Phase-Locked -Loop Analogy, ” IEEE Transactions on Circuits and Systems II , vol.54, no.3, March 2007.
    [38] K.-H. Cheng, and W.-B. Yang, “A Low Power, Wide Operating Frequency and High Noise Immunity Half-Digital Phased-Locked Loop,” in proc. IEEE ASIC, pp.263-266, Aug. 2002.
    [39] A. Rossi, and G. Fucili, “Nonredundant successive approximation register for A/D converters,” IEE Electronics Letters, vol.32, no.12, pp.1055-1057, June 1996.
    [40] N. Weste, and K. Eshraghian, “Principles of CMOS VLSI design,” Addison Wesley, 1993.

    無法下載圖示 全文公開日期 2013/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE