簡易檢索 / 詳目顯示

研究生: 尤俊淵
Jun-Yuan Yu
論文名稱: 3.3 kW 無橋式功因修正器之研製
Design and Implementation of a 3.3 kW Bridge-less Power Factor Corrector
指導教授: 劉益華
Yi-Hua Liu
邱煌仁
Huang-Jen Chiu
口試委員: 張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 車載充電器無橋式功率因數修正器交錯式控制二階廣義正 交器鎖相迴路
外文關鍵詞: On-board charger, Bridgeless power factor corrector, Interleaved control, Second-Order Generalized Quadrature Phase-Locked Loop
相關次數: 點閱:179下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了符合嚴苛的汽車環保法規能源轉換效率要求,純電動車以及輕油電混合式動力車的高能源轉換率成為未來趨勢。功率因數修正器是改善交流電源端功率因數的電路,被廣泛應用在電源轉換器中,其中純電動車中的電池規格為 400 V 充電系統,需要功率因數修正器串級隔離直流轉直流轉換器對電池充電,本文旨在研製一 3.3 kW 寬範圍輸出電壓功率因數修正器,應用於純電動車中的車載充電器的整流電路,採用碳化矽功率元件作為電路架構中高頻臂之功率開關降低切換損失。電路架構選用三相交錯式圖騰柱升壓型功率因數修正器,是一種無橋式功率因數修正器,使用相移調變技術使每臂開關信號交錯式控制,此電路架構具備電流漣波抵銷提高電流等效切換頻率,以及電流應力分流,使開關上損耗降低,符合大電流需求。以數位晶片實現雙迴路控制之電壓控制、電流控制、二階廣義正交器鎖相迴路及設計適用於寬範圍輸出功率因數修正器之雙迴路控制法,根據不同電池狀態下調整輸出電壓,優化後級的隔離直流轉直流轉換器效率,以達到整個系統效率提升。本文使用 PSIM 模擬軟體驗證控制法及電路參數,以迴路增益及迴路相位考慮數位延遲,設計控制器。最終實現電流等效頻率為 150 kHz,輸入電壓為 230 VRMS,輸出電壓 400~850 V,輸出功率 3.3 kW,峰值效率可達到 98.68 %的三相交錯式圖騰柱升壓型功率因數修正器。


    To meet stringent automotive environmental regulations and achieve high
    energy conversion efficiency, improving the energy conversion rate has become
    a future trend for pure electric vehicles and light oil-electric hybrid powertrains.
    The power factor correction (PFC) circuit is widely used in power converters to
    improve the power factor at the AC power supply end. In the context of pure
    electric vehicles, which have a battery specification of a 400 V charging system,
    a PFC circuit is required to be cascaded with an isolated DC-DC converter to
    efficiently charge the battery. This thesis proposes implementation a 3.3 kW
    wide-output-voltage power factor corrector for the rectification circuit of an onboard charger designed for pure electric vehicles. The chosen circuit topology is
    a three-phase interleaved totem pole PFC, employing phase-shift modulation to
    achieve interleaved control of each arm's switches. The benefits of this topology
    are ripple current cancellation to increase the equivalent switching frequency of
    the current and current stress sharing, leading to reduced losses on the switches.
    Implementation of a dual-loop control method for voltage control, current control, and a second-order generalized quadrature phase-locked loop(SOGI-PLL),
    designed specifically for a wide-output power factor correction (PFC) circuit.
    The dual-loop control is used to adjust the output voltage based on different battery states, optimizing the efficiency of the downstream isolated DC-DC converter to enhance the overall system efficiency. The control method and circuit
    parameters are verified using PSIM simulation software. The final implementation achieves a current equivalent frequency of 150 kHz, with an input voltage
    of 230 VRMS, output voltage ranging from 400~850 V, and an output power of
    3.3 kW. The peak efficiency of the three-phase interleaved totem pole PFC
    reaches 98.68%.

    摘要……………………………………….i Abstract.............................. ii 致謝................................... iii 目錄………………….v 圖索引.............................. vii 表索引................................xi 第一章 緒論 ......................1 1.1 研究動機與目的................................1 1.2 章節大綱.... …………………....6 第二章 功率因數修正器之原理 ..........................7 2.1 總諧波失真與功率因數之定義... ………………….....7 2.2 有橋式功率因數修正器架構分析.. …………………..8 2.3 無橋式功率因數修正器架構分析. ………………….10 2.4 交錯式圖騰柱升壓型功率因數修正器架構分析..............21 第三章 功率因數修正控制迴路分析 ................32 3.1 功率因數修正器控制原理..............32 3.1.1 平均電流控制-乘法器..........………………....33 3.1.2 平均電流控制-乘除法器 .......……………….34 3.1.3 平均電流控制-線性調節乘除法器 .............................36 3.2 鎖相迴路....………………………………..38 3.3 小信號分析……………………………………..47 3.3.1 線性調節乘除法器小信號分析...................................47 3.3.2 電流迴路分析...........................52 第四章 系統研製 ........…………………....54 4.1 硬體電路設計..................................54 4.1.1 電感設計...................................54 4.1.2 電容設計...................................55 4.2 韌體設計...…………………...55 4.2.1 數位控制規劃與實現........……….......56 4.2.2 控制器設計...............................58 第五章 電路模擬與實驗結果 ........... ………….................62 5.1 模擬結果....……………………..62 5.2 實驗結果..……………………...66 5.2.1 實際電路圖...............................66 5.2.2 實測波形...................................68 第六章 結論與未來展望 ………………………………77 6.1 結論..................................................77 6.2 未來展望.....…………………….77 參考文獻...........................78

    [1] BRUSA HyPower, "APPLICATIONS POWERED BY BRUSA, "
    https://www.brusahypower.com/applications/
    [2] Chevrolet Volt ELR, "Chevy Volt Lear 3.3kW High Voltage Charger,
    " http://media3.evtv.me/ChevyVoltLearChargerOperations.pdf
    [3] Wolfspeed, "Why Choose SiC over Si for Your Next Bidirectional
    On-Board Charger Design?, "
    https://www.wolfspeed.com/knowledge-center/article/why-choosesic-over-si-for-your-next-bidirectional-on-board-charger-design/
    [4] B. Li, Q. Li, F. C. Lee, Z. Liu and Y. Yang, "A High-Efficiency HighDensity Wide-Bandgap Device-Based Bidirectional On-Board
    Charger," in IEEE Journal of Emerging and Selected Topics in
    Power Electronics, vol. 6, no. 3, pp. 1627-1636, Sept. 2018, doi:
    10.1109/JESTPE.2018.2845846.
    [5] B. Whitaker et al., "A High-Density, High-Efficiency, Isolated OnBoard Vehicle Battery Charger Utilizing Silicon Carbide Power Devices," in IEEE Transactions on Power Electronics, vol. 29, no. 5,
    pp. 2606-2617, May 2014, doi: 10.1109/TPEL.2013.2279950.
    [6] IEC 61000-3-2, Electromagnetic compatibility (EMC) − Electromagnetic compatibility (EMC) − Part 2-2: Environment − Compatibility levels for low-frequency conducted disturbances and signaling
    in public low-voltage power supply systems
    [7] C. K. Duffey and R. P. Stratford, “Update of harmonic standard
    IEEE-519: IEEE Recommended Practices and Requirements for
    Harmonic Control in Electric Power Systems,” Record of
    Conference Papers., Industrial Applications Society 35th Annual
    Petroleum and Chemical Industry Conference,, 1988, pp. 249-255,
    doi:10.1109/PCICON.1988.22445.
    [8] H. S. Nair and N. Lakshminarasamma, "Challenges in achieving
    high performance in boost PFC converter," 2017 IEEE International
    Conference on Signal Processing, Informatics, Communication and
    Energy Systems (SPICES), Kollam, India, 2017, pp. 1-6, doi:
    10.1109/SPICES.2017.8091329.
    [9] L. Huber, Y. Jang and M. M. Jovanovic, "Performance Evaluation of
    Bridgeless PFC Boost Rectifiers," in IEEE Transactions on Power
    Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008, doi:
    10.1109/TPEL.2008.921107.
    [10] STMicroelectronics, " Digital Power approach with STM32G4 in
    5G TPS / CCM Totem Pole PFC ", https://www.st.com/content/dam/is20/document/PE4-1_Chill_Ye_Digital_Power_approach_with_STM32G4_in_5G_TPS_CCM_Totem_Pole_PFC_EN.pdf
    [11] M. -C. Ancuti, M. Svoboda, S. Musuroi, A. Hedes and N. -V.
    Olarescu, "Boost PFC converter versus bridgeless boost PFC converter EMI analysis," 2014 International Conference on Applied and
    Theoretical Electricity (ICATE), Craiova, Romania, 2014, pp. 1-6,
    doi: 10.1109/ICATE.2014.6972652.
    [12] F. Musavi, W. Eberle and W. G. Dunford, "A Phase-Shifted Gating
    Technique With Simplified Current Sensing for the Semi-Bridgeless
    AC–DC Converter," in IEEE Transactions on Vehicular Technology,
    vol. 62, no. 4, pp. 1568-1576, May 2013, doi:
    10.1109/TVT.2012.2231709.
    [13] Dong-Kwan Kim, Yeonho Jeong, Cheon-Yong Lim, Byeonggu
    Kang and Gun-Woo Moon, "Bidirectional bridgeless PFC with reduced input current distortion and switching loss using gate skipping
    technique," 2016 IEEE Transportation Electrification Conference
    and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, 2016, pp. 579-
    583, doi: 10.1109/ITEC-AP.2016.7513019.
    [14] Q. Huang and A. Q. Huang, "Review of GaN totem-pole bridgeless
    PFC," in CPSS Transactions on Power Electronics and Applications,
    vol. 2, no. 3, pp. 187-196, Sept. 2017, doi:
    10.24295/CPSSTPEA.2017.00018.
    [15] Masoud Karimi-Ghartemani, ENHANCED PHASE-LOCKED
    LOOP STRUCTURES FOR POWER AND ENERGY APPLICATIONS, Mississippi State University, IEEE Press Series on Microelectronic Systems, 2014,xxi-xxiii.
    [16] T. Thacker, D. Boroyevich, R. Burgos and F. Wang, "Phase-Locked
    Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems," in IEEE Transactions on Industrial Electronics,
    vol. 58, no. 6, pp. 2482-2490, June 2011, doi:
    10.1109/TIE.2010.2069070.
    [17] S. Golestan, M. Monfared, F. D. Freijedo and J. M. Guerrero, "Dynamics Assessment of Advanced Single-Phase PLL Structures," in
    IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2167-
    2177, June 2013, doi: 10.1109/TIE.2012.2193863.
    [18] Wikipedia, " 派 克 轉 換 , " https://zh.wikipedia.org/zhtw/%E6%B4%BE%E5%85%8B%E5%8F%98%E6%8D%A2
    [19] K. P. Louganski and J. -s. Lai, "Active Compensation of the Input
    Filter Capacitor Current in Single-Phase PFC Boost Converters,"
    2006 IEEE Workshops on Computers in Power Electronics, Troy,
    NY, USA, 2006, pp. 282-288, doi: 10.1109/COMPEL.2006.305627.
    [20] 莊竣宇,功因修正器之數位控制,國立臺灣科技大學電機工程
    系碩士學位論文,2013 年。
    [21] Dalvir K. Saini, "True-Average Curr age Current-Mode Contr entMode Control of DC-DC P ol of DC-DC Power Conv ower Converters: Analysis, Design, and Characterization, " Wright State University, A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
    [22] United Chemi-Con, "LARGE CAPACITANCE ALUMINUM
    ELECTROLYTIC CAPACITORS, " https://www.chemicon.co.jp/products/relatedfiles/capacitor/catalog/LHSN-e.PDF
    [23] TEXAS INSTRUMENTS, "TMS320F28004x Real-Time Microcontrollers, " https://www.ti.com/lit/ds/symlink/tms320f280049.pdf?ts=1687397848350&ref_url=https%253A
    %252F%252Fwww.ti.com%252Fproduct%252Fkokr%252FTMS320F280049
    [24] happy_baymax,"零阶保持器(ZOH)与一阶低通滤波器频率特
    性分析 , " https://blog.csdn.net/happy_baymax/article/details/123604740
    [25] L. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital
    Control of High-Frequency Switched-Mode Power Converters.
    Hoboken, NJ, USA: Wiley, 2015.
    [26] Wikipedia , " 上 下 文 切 換 , " https://zh.wikipedia.org/zhtw/%E4%B8%8A%E4%B8%8B%E6%96%87%E4%BA%A4%E6
    %8F%9B
    [27] K. P. Louganski and J. -S. Lai, "Current Phase Lead Compensation
    in Single-Phase PFC Boost Converters With a Reduced Switching
    Frequency to Line Frequency Ratio," in IEEE Transactions on
    Power Electronics, vol. 22, no. 1, pp. 113-119, Jan. 2007, doi:
    10.1109/TPEL.2006.886656

    QR CODE