簡易檢索 / 詳目顯示

研究生: 劉坤宗
Kun-Zong Liu
論文名稱: 工業型六軸機械手臂連桿Denavit-Hartenberg參數校正之研究
A Study on the Calibration of the Denavit-Hartenberg Links Parameters for An Industrial Six-axis Robot Arm
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 鄧惟中
Wei-Chung Teng
溫哲彥
Che-yen Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 89
中文關鍵詞: 運動學模型連桿參數校正位置精度
外文關鍵詞: kinematics model, links parameters calibration, position accuracy
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業型機械手臂在現今工業界已成為工廠自動化不可缺少的設備,代替大量的人力執行高危險環境與重複性的作業。位置精度是機械手臂重要的性能指標之一,然而,機械手臂在製造或組裝過程中,常會因機械加工或人為組裝時的誤差,使機械手臂的幾何外型常常與原先設計有所差異,導致位置精度不佳。本研究提出一個低成本且時間快速的方法,利用機械手臂運動學模型,估算機械手臂幾何之連桿參數。在實驗中,以光學編碼器與電子數位千分表分別量測關節位置與終端效果器的位置變化量,藉由本研究提出之方法對工業型六軸機械手臂進行連桿參數校正,更新機械手臂之幾何參數。最後利用位置誤差實驗,驗證此校正方法的正確性。


    Industrial robot arms are the indispensable equipment that have been widely used in automatic situation. They substitute high amount of human force to execute high dangerous and repetitive work. Position accuracy is one of the important performance of robot arms. However, when a robot arm is under manufacturing or assembly process, there are several reasons that would cause imprecise manufacturing, set up errors, gear backlash, gear transmission error, transmission errors and compliance, etc. In this study, we propose a low cost and time saving method by using robot arm kinematics model to estimate the geometric link parameters of the robot arm. In the experiments, encoders and micrometer are used to measure the joint positions and the position displacements of the robot arm respectively. By using the links parameters calibration method proposed in this study, we calibrate the industrial six-axis robot arm’s links parameters and update the geometric parameters of the robot arm. Finally, position error experiments are conducted to verify the accuracy of this calibration method.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景 1.2 文獻回顧 1.3 研究動機與目的 1.4 研究論文架構 第二章 運動學分析 2.1 幾何運動學 2.1.1 齊次轉換矩陣 2.1.2 Denavit-Hartenberg representation(D-H法) 2.1.3 正向運動學(Forward kinematics) 2.1.4 反向運動學(Inverse kinematics) 2.1.5 模擬驗證 2.2 連桿參數校正方法 第三章 實驗設備 3.1 致動器 3.1.1 馬達及驅動器 3.1.2 減速機 3.2 運動控制卡 3.3 電子數位千分表 第四章 實驗與結果討論 4.1 模擬連桿參數校正實驗 4.2 位置誤差、往復精度實驗 4.3 連桿參數校正實驗 第五章 結論與未來展望 參考文獻

    [1]Lightcap, C., Hamner, S., Schmitz, T., and Banks, S., “Improved Positioning Accuracy of the PA10-6CE Robot with Geometric and Flexibility Calibration,” Proc. IEEE Transactions on Robotics, Montreal, QC, Canada, Vol. 24, No. 2, pp. 452-456, 2008.
    [2]Gang, C., Tong, L.M., Chu, X., Qing, J., and Xu, S.H., “Review on Kinematics Calibration Technology of Serial Robots,” International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 8, pp. 1759-1774, 2014.
    [3]Mooring, B. W. and Pack, T.P., “Calibration Procedure for an Industrial Robot,” Proc. IEEE International Conference Robotics and Automation, Philadelphia, United States, pp. 786-791, 1988.
    [4]Whitney, D.E., Lozinski, C.A., and Rourke, J.M., “Industrial Robot Forward Calibration Method and Results,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 108, No. 1, pp. 1-8, 1986.
    [5]Jang, J.H., Kim, S.H., and Kwak, Y.K., “Calibration of geometric and non-geometric errors of an industrial robot,” Robotica, Vol. 19, No. 3, pp. 311-321, 2001.
    [6]Karan, B., and Vukobratovic, M., “Calibration and Accuracy of Manipulation Robot Models-An Overview,” Mechanism and Machine Theory, Vol. 29, No. 3, pp. 479-500, 1994.
    [7]Schröer, K., Albright, S. L., and Grethlein, M., “Complete, Minimal and Model-Continuous Kinematic Models for Robot Calibration,” Robotics and Computer-Integrated Manufacturing, Vol. 13, No. 1, pp. 73-85, 1997.
    [8]Denavit, J. and Hartenberg, R.S., “A Kinematic Notation for Lower-pair Mechanisms Based on Matrices,” ASME Journal of Applied Mechanics, Vol. 77, pp. 215-221, 1955.
    [9]Everett, L.J., Driels, M., and Mooring, B.W., “Kinematic Modelling for Robot Calibration,” Proc. IEEE International Conference on Robotics and Automation. pp. 183-189, 1987.
    [10]Hsu, T.W., and Everett, L.J., “Identification of the Kinematic Parameters of a Robot Manipulator for Positional Accuracy Improvement,” Proceeding of the 1985 Computers in Engineering Conference and Exhibition, Boston, Mass., pp. 263-267. August, 1985.
    [11]Hayati, S.A., “Robot Arm Geometric Link Parameter Estimation,” Proc. of 22nd IEEE Conference on Decision and Control, pp. 1477-1483, 1983.
    [12]Chen, I.M., Yang, G., Tan, C.T., and Yeo, S.H., “Local POE Model for Robot Kinematic Calibration,” Mechanism and Machine Theory, Vol. 36, No. 11, pp. 1215-1239, 2001.
    [13]Newman, W.S., Birkhimer, C.E., Horning, R.J., “Calibration of a Motoman P8 Robot Based on Laser Tracking,” Proc. IEEE International Conference on Robotics & Automation, pp. 1050-4729, 2000.
    [14]Chen J. and Chao L.M., “Positioning error analysis for robot manipulator with all rotary joints,” Proc. IEEE Int. Conf. Robotics Automat., pp. 351-357, Apr.,1987
    [15]Hager G.D., Chang W.C. and Morse A.S., “Robot Hand-Eye Coordination Based on Stereo Vision,” Proc.IEEE Control Systems Magazine, pp. 30-39, 1995.
    [16]Nubiola, A., Slamani, M., and Bonev, I.A., “A New Method for Measuring a Large Set of Poses with a Single Telescoping Ballbar,” Precision Engineering, Vol. 37, No. 2, pp. 451-460, 2013.
    [17]Robinson, P., Orzechowski, P., James, P.W., and Smith, C., “An Automated Robot Calibration System,” Proc. IEEE International Symposium on Industrial Electronics, Vol. 1, pp. 285-290, 1997.
    [18]Watanabe, A., Sakakibara, S., Ban, K., Yamada, M., Shen, G., and Arai, T., “A Kinematic Calibration Method for Industrial Robots using Autonomous Visual Measurement,” CIRP Annals Manufacturing Technology, Vol. 55, No. 1, pp. 1-6, 2006.
    [19]Vira, N. and Shiferaw, T., “Higher Order Approximation of the Generalized Kinematic Error Compensation Model for Robots,” Computers in Industry, Vol. 12, No. 4, pp. 313-328, 1989.
    [20]Nubiola, A. and Bonev, I.A., “Absolute Calibration of an ABB IRB 1600 Robot using a Laser Tracker,” Robotics and Computer- Integrated Manufacturing, Vol. 29, No. 1, pp. 236-245, 2013.
    [21]Zhuang, H., and Roth, Z., “Camera-Aided Robot Calibration,” pp. 63-64, CRC, 1996.
    [22]Gatti, G. and Danieli,G., “A practical approach to compensate for geometric errors in measuring arms:Application to a six-degree-of-freedom kinematic structure,” Meas. Sci. Technol., Vol. 19, No. 1, pp. 015107-1–015107-12, 2008.
    [23]He, R., Zhao, Y., Yang, S., and Yang, S., “Kinematic-Parameter Identification for Serial-Robot Calibration based on POE Formula,” Proc. IEEE Transactions on Robotics, Vol. 26, No. 3, pp. 411-423, 2010.
    [24]Bai, Y. and Zhuang, H., “Modeless Robots Calibration in 3D Workspace with an On-Line Fuzzy Interpolation Technique,” Proc. IEEE International Conference on Systems, Man and Cybernetics, Vol. 6, pp. 5233-5239, 2004.
    [25]Chung H., Ojeda L., and Borenstein J., “Accurate mobile robot dead-reckoning with a precision-calibrated fiber-optic gyroscope,” Proc. IEEE International Conference on Robotics and Automation. pp. 80-84, 2001.
    [26]Kim, M.K., Yoon, C.S., and Kang, H.J., “Development of a Robot Performance Evaluation System Using Leica LTD 500 Laser Tracker,” International Symposium on Electrical & Electronics Engineering, pp. 18-23, 2005.
    [27]KS B 7082:1999 (ISO 9283:1998) Robot Performance Criteria, Association of Korea Standard, 1999.
    [28]Fu K.S., Gonzalez R.C. and Lee C.S.G., Robotics Control, Sensing, Vision, and Intelligence, McGraw-Hill Book Company, New York,1987.
    [29]Spong, M.W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, John Wiley and Sons, New York, 2006.
    [30]Kohama, A., Mori, R., Komai, S., Suzuki, M., Aoyagi, S., Fujioka, J., and Kamiya, Y. “Calibration of Kinematic Parameters of a Robot Using Neural Networks by a Laser Tracking System.” Service Robotics and Mechatronics, pp. 269-274, 2010.

    無法下載圖示 全文公開日期 2020/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE