簡易檢索 / 詳目顯示

研究生: 楊勝涵
Sheng-han Yang
論文名稱: 以有機金屬化學氣相沉積製備高銦含量氮化銦鎵薄膜
In-rich InGaN thin film growth by metal organic chemical vapor deposition
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 黃鶯聲
Ying-sheng Huang
洪儒生
Lu-sheng Hong
趙良君
Liang-chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 147
中文關鍵詞: 氮化鎵高銦含量氮化銦鎵氮化鋁銦鎵相分離XRDMOCVD
外文關鍵詞: GaN, In-rich InGaN, AlInGaN, phase separation, XRD, MOCVD
相關次數: 點閱:314下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們在n-GaN/Sapphire基材上以自組裝的有機金屬化學氣相沈積(Metal Organic Chemical Vapor Deposition, MOCVD)系統成長氮化鎵(GaN)、氮化銦鎵(InXGa1-XN)和氮化鋁銦鎵(AlInGaN)薄膜,對於薄膜的特性分析,則利用場發射掃描電子顯微鏡(FE-SEM)、X光繞射分析儀(XRD)、X射線光電子能譜儀(XPS)和光激發螢光光譜儀(PL)。
    首先以探討成長氣壓對GaN薄膜的影響,在固定所有的成長參數下改變不同的成長氣壓,隨著成長氣壓的降低,可改善薄膜的品質和增加成長速率,在成長氣壓為25 torr時有較好的薄膜品質。接著在InXGa1-XN薄膜的成長中,發現降低成長氣壓或溫度及增加TMIn/(TMIn+TMGa)進料流量比或成長時間都可提高InXGa1-XN薄膜中的銦含量,並利用以上參數成長出一系列高銦含量、單一X光繞射峰的InXGa1-XN(0.17≦X≦0.45)薄膜,使用XPS分析元素成份比與XRD推算出來的結果是一致的。
    對於AlInGaN薄膜成長方面,固定TMIn/(TMIn+TMGa)進料流量比,增加三甲基鋁(TMAl)的進料,當TMAl進料增加,晶格常數會變小。
    最後利用AlInGaN當緩衝層來降低高銦含量的InGaN與GaN間的晶格不匹配,只要多了30 nm 厚度的AlInGaN緩衝層,其繞射角都會往左位移,造成銦含量增加,這樣的結果推測是因為張力緩衝層發揮效果,使得高銦含量的InGaN更容易長成。然後使用AlInGaN當纖衣層成長多對In0.43Ga0.57N/AlInGaN薄膜結構,發現薄膜的XRD圖形是由兩個繞射峰合成,且繞射峰對應的繞射角和原本In0.43Ga0.57N和AlInGaN的繞射角有些許不同,推測可能是因多層結構造成晶格應力互相影響,以及在成長時接面處會有Al、Ga、In互相擴散的結果。


    In this study, we have grown gallium nitride (GaN), indium gallium nitride (InGaN), and aluminum indium gallium nitride (AlInGaN) thin films on the n-GaN/Sapphire substrates by employing a home-made metal organic chemical vapor deposition (MOCVD) system. The material properties of these samples were characterized by using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS) and Photoluminescence (PL).
    At the beginning, we explored the effect of the growth pressure for the GaN thin films. We improved thin film’s quality and increased the growth rate by reducing the growth pressure down to 25 torr. In InXGa1-XN thin film growth, we found the indium content in InXGa1-XN could be increased by decreasing the growth pressure or the growth temperature, or by increasing TMIn/(TMIn+TMGa) input flow ratio or growth time. As a result, In-rich InXGa1-XN thin films that have x ratios in between 0.17 and 0.45 and exhibited single X-ray diffraction peak were grown. Comparing the elemental analysis of XPS with the XRD results, the two are consistent.
    For AlInGaN thin film growth, we fixed the TMIn/(TMIn+TMGa) input flow ratio and increased TMAl input flow. The lattice constant became smaller when the TMAl input flow was increased.
    Finally, we used AlInGAN as buffer layer to reduce lattice mismatch between In-rich InGaN and GaN. With 30 nm-thick AlInGaN buffer layer, the X-ray diffraction peak of the thin film shifted to left that indicated higher indium content. It was likely due to stress relaxation; In-rich InGaN was easier to grow. Moreover, using AlInGaN as a cladding material to grow multi-pair In0.43Ga0.57N/AlInGaN thin film structure, we found the X-ray diffraction profile was composed of two peaks with peak positions somewhat different from the original positions of In0.43Ga0.57N and AlInGaN. It was possibly resulted from lattice strain interaction and Al/Ga/In composition interdiffusion between layers during growth.

    中文摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 第二章 研究背景與動機 2.1 氮化鎵(GaN)的發展及應用 2.2 氮化銦鎵之文獻回顧 2.3 本實驗之研究目的及方向 第三章 成長系統與分析儀器 3.1 有機金屬化學氣相沉積(MOCVD)原理簡介 3.2 實驗氣體及藥品 3.3 實驗裝置及方法 3.3.1 實驗裝置 3.3.2 實驗方法 3.4 分析儀器 3.4.1 場發射掃描電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM) 3.4.2 X光繞射分析儀(X-ray Diffraction, XRD) 3.4.3 X射線光電子能譜儀(X-ray photoelectron spectrometer, XPS) 3.4.4 光激發螢光光譜儀 (Photoluminescence, PL) 第四章 結果與討論 4.1 GaN薄膜成長 4.1.1 成長氣壓對薄膜表面形態影響 4.2 InGaN薄膜成長 4.2.1 成長氣壓對銦含量之影響 4.2.2 不同TMIn/(TMGa+TMIn)進料比對銦含量之關係 4.2.3 成長溫度對銦含量之影響 4.2.4 氮化銦鎵薄膜厚度對薄膜品質與銦含量之影響 4.3 AIInGaN薄膜成長 4.3.1 不同TMAl進料對薄膜結構之影響 4.4 使用AlInGaN當緩衝層成長InGaN薄膜 4.4.1 650℃下所成長的AlInGaN/InGaN薄膜 4.4.2 725℃下所成長的AlInGaN/InGaN薄膜 4.5 使用AlInGaN當纖衣層成長In0.43Ga0.57N薄膜 第五章 結論與未來展望 參考文獻

    [1]A. G. Bhuiyan, K. Sugita, K. Kasashima, and A. Hashimoto,” Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy,” Appl. Phys. Lett., Vol. 83, 4788 (2002)
    [2]E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, NY, p. 223 (2006)
    [3]O. Jani, C. Honsberg, A.Asghar, D.Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, ”Characterization and analysis of InGaN photovoltaic devices,” Present at the 31st IEEE Photovoltaic Specialists Conference, Jan 3-7 (2005)
    [4]P. Mottier, LEDs for Lighting Applications, ISTE and John Wiley & Sons, London, p. 33 (2009)
    [5]P. Mottier, LEDs for Lighting Applications, ISTE and John Wiley & Sons, London, p. 36 (2009)
    [6]T. Lei, K. F. Ludwig, Jr., and T. M. Moustakas, ”Heteroepitaxy, polymorphism, and faulting in GaN thin films on silicon and sapphire substrates,” J. Appl. Phys., Vol. 74, pp. 4430-4437 (1993)
    [7]I. Nikitina, G. Mosina, Y. Melnik, A. Nikolaev, and K. Vassilecski, “Dislocation structure of GaN bulk crystals grown on SiC substrates by HVPE,” Mater. Sci. Eng. B, Vol. 61, pp. 325-329 (1999)
    [8]S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AlN heterostructures,” J. Vac. Sci. Tech., Vol. B1, pp. 250 (1983)
    [9]A. Hiroshi, A. Tsunemori, and A. Isamu., ”Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer,” Jpn. J. Appl. Phys., Vol. 29, pp. L205-L206 (1990)
    [10]S. Nakamura, S. Pearton, and G. Fasol., The Blue Laser Diode: The Complete Story, Springer, Berlin (2000)
    [11]A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., Vol. 36, pp. L889-902 (1997)
    [12]W. Gotz and N. M. Johnson, “Activation energies of Si donors in GaN,” Appl. Phys. Lett., Vol. 68, pp. 3144-3146 (1996)
    [13]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron-Beam Irradiation,” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-2114 (1989)
    [14]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-Type Mg-doped GaN films,” Jpn. J. Appl. Phys., Vol. 31, pp. L139-142 (1992)
    [15]S. Nakamura, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett., Vol. 62, pp. 2390-2392 (1993)
    [16]S. Nakamura, M. Senoh, and T. Mukia, “P-GaN/n-InGaN/GaN Double-heterostructure Blue-light-emitting Diodes,” Jpn. J. Appl. Phys., Vol. 32, p. L8 (1993)
    [17]S. Nakamura, M. Senoh, N. Iwasaand, and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys.,Vol. 34, pp. L797-799 (1995)
    [18]S. Nakamura, S. Masayuki, N. Shinichi, I. Naruhito, Y. Takao, M. Toshio, et al., “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys., Vol. 35, pp. L74-76 (1996)
    [19]S. Nakamura, “Growth of InxGa1−xN compound semiconductors and high-power InGaN/AlGaN double heterostructure violet light emitting diodes,” J. Microelectron, Vol. 25, pp. 651-659 (1994)
    [20]C. A. Chang, C. F. Shin, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1−xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 85, pp. 6131-6133 (2004)
    [21]K. Poochinda, T. C. Chen, T. G. Stoebe, and N. L. Ricker, “Structural, optical and electrical properties of GaN and InGaN films grown by MOCVD,” J. Cryst. Growth, Vol. 272, pp. 460-465 (2004)
    [22]P. F. Yang, S. R. Jian, Y. S. Lai, C. S. Yang, and R. S. Chen, “Morphological, structural, and mechanical characterizations of InGaN thin films deposited by MOCVD,” J. Alloys and Comp., Vol. 463, pp. 533-538 (2008)
    [23]B. N. Phanta, J. Li, J. Y. Lin, and H. X. Jiang, “Single phase InxGa1−xN (0.25 ≤ x ≤ 0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett., Vol. 93, p. 128107 (2008)
    [24]H. J. Kim, Y. Shin, S. Y. Kwon, H. J. Kim, S. Choi, S. Hong ,C. S. Kim, J. W. Yoon, H. Cheong, and E. Yoon, “Compositional analysis of In-rich InGaN layers grown on GaN templates by metalorganic chemical vapor deposition,” J. Cryst.Growth, Vol. 310, pp. 3004– 3008 (2008)
    [25]Y. Guo, X.L. Liu, H.P. Song, A.L. Yang, X.Q. Xu, G.L. Zheng, H.Y. Wei, S.Y. Yang, Q.S. Zhu, and Z.G. Wang, “A study of indium incorporation in In-rich InGaN grown by MOVPE,” Applied Surface Science, Vol. 256, pp. 3352–3356 (2010)
    [26]S. Nakamura, “III-V nitride-based light-emitting diodes,” Diamond and Related Materials, Vol. 5, pp. 496-500 (1996)
    [27]T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, and I. Akasaki, “Optical properties of strained AlGaN and GaInN on GaN,” Jpn J. Appl. Phys., Vol. 36, pp. L177-179 (1997)
    [28]C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, “Optical band gap in Ga1−xInxN (0<x<0.2) on GaN by photoreflection spectroscopy,” Appl. Phys. Lett., Vol. 73, pp. 1994-1996 (1998)
    [29]M. D. McCluskey, C. G. Van de Walle, C. P. Master, L. T. Romano, and N. M. Johnson, “Large band gap bowing of InxGa1−xN alloys,” Appl. Phys. Lett., Vol. 72, pp. 2725-2726 (1998)
    [30]C. A. Parker, J. Roberts, S. M. Bedair, M. J. Reeds, S. X. Liu, N. A. El-Masry, and L. H. Robins, “Optical band gap dependence on composition and thickness of InxGa1−xN (0<x<0.25) grown on GaN,” Appl. Phys. Lett., Vol. 75, pp. 2566-2568 (1999)
    [31]J. Wagner, A. Ramakrishnan, D. Behr, M. Maier, N. Herres, M. Kunzer, H. Obloh, and K. H. Bachem, “Composition dependence of the band gap energy of InxGa1-xN layers on GaN (x≤0.15) grown by metal-organic chemical vapor deposition,” MRS Internet J. Nitride Semicond. Res., Vol. 537, p. G2.8 (1999)
    [32]F. B. Naranjo, S. Fernandez, M. A. Sanchez-Garcia, F. Calle, E. Calleja, A. Trampert, and K. H. Ploog, “Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy,” Mater. Sci. Eng.,Vol. B93, pp. 131-134 (2002)
    [33]X. Q. Shen, T. Ide, M. Shimizu, and H. Okumura, “Growth and characterizations of InGaN on N- and Ga-polarity GaN grown by plasma-assisted molecular-beam epitaxy,” J. Cryst. Growth, Vol. 237–239, pp. 1148-1152 (2002)
    [34]M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanishi, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE,” Phys. Status Solidi b, Vol. 241, pp. 2843-2848 (2004)
    [35]劉如熹,白光發光二極體製作技術,全華科技圖書股份有限公司,台北 (2008)。
    [36]張運旋,「P行氮化鎵成長過程中添加三氯化鎵作為氫自由基捕捉劑之研究」,碩士論文,國立台灣科技大學,台北 (2007)。
    [37]R. A. Young and R. V. Kalin, “Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials,” in Microelectronic Processing: Inorganic Material Characteriza-tion (L.A. Casper, ed.), American Chemical Soc., Symp. Series 295, Washington, DC, pp. 49-74 (1986).
    [38]彭立祥,材料科學,書泉出版社,台北 (2002)。
    [39]Y.H. Seo, K.C. Kim H.W.Shim, K.S. Nahm, E.K. Suh, H.J. Lee, D. K. Kim, and B.T. Lee, “Effects of Experimental Parameters on Void Formation in the Growth of 3C-SiC Thin Film on Si Substrate,” J. Electrochem. Soc.,Vol. 145, pp. 292-299 (1998)
    [40]洪儒生、劉智生,「分析與量測儀器」,化工技術學刊,第十五捲第三期,第179頁 (2003)。
    [41]M. Yoshida, H. Watanabe, and F. Uesugi, “Mass Spectrometric Study of Ga(CH3)3 and Ga(C2H5) 3 Decomposition Reaction in H2 and N2,” J. Electrochem. Soc., Vol. 132, pp. 677-679 (1985)
    [42]S.P. Denbaars, B.Y. Maa, P.D. Dapkus, A.D. Danner, and H.C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD,” J. Crystal Growth, Vol. 77, pp. 188-193 (1986)
    [43]P. W. Lee, T. R. Omstead, D. R. Mckenna, and K. F. Jensen, “In situ mass spectroscopy and thermogravimetric studies of GaAs MOCVD gas phase and surface reactions,” J. Cryst. Growth, Vol. 85, pp. 165-174 (1987)
    [44]M. Ohring, The Materials Science of Thin Films, Academic Press, London, ch. 4. (1992)
    [45]D.J. KIM, Y.T. MOON, K.M. SONG, I.H. LEE, and S.J. PARK, “Effect of Growth Pressure on Indium Incorporation During the Growth of InGaN by MOCVD,” J. Electronic Materials, Vol. 30, pp. 99-102 (2001)
    [46]Yen-Sheng Lin, “The Material Characteristic Study of InGaN/GaN Multiple Quantum Wells,” Ph.D dissertation, National Defense University, Taoyuan, Taiwan (2002)

    QR CODE