簡易檢索 / 詳目顯示

研究生: Getachew Feyissa
Getachew Feyissa
論文名稱: 製備多種光反應用氧化鋅
Preparation of various types of zinc oxides for photoreactions
指導教授: 顏怡文
Yee-Wen Yen
今榮東洋子
Toyoko Imae
口試委員: Yu-sheng Hsiao
Yu-sheng Hsiao
陳志明
Chih-Ming Chen
kyle Y.Liu
kyle Y.Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 150
中文關鍵詞: 氧化鋅奈米線氧化鋅奈米粒子碳點柔性染料敏化太陽能電池TEMPO氧化纖維素奈米纖維氧化鋅,量子奈米粒子
外文關鍵詞: Zinc oxide nanowire, Zinc oxide nanoparticle, Carbon dot, Flexible Dye synthesize solar cells, Tempo Oxide Cellulose Nanofibers, femtosecond pulse laser fabrication
相關次數: 點閱:300下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在研究的第一部分,氧化鋅奈米線是使用水熱合成法合成;氧化鋅粒子是使用多元醇溶質法合成;而碳點也是使用水熱合成法合成。氧化鋅奈米線與氧化鋅奈米粒子用於光子學、太陽能電池和光伏裝置,對其複合材料進行表徵分析。已評估氧化鋅奈米線和氧化鋅奈米粒子的效果添加碳點對光伏器件性能的影響。在柔性染料敏化太陽能電池中,在氧化鋅奈米線與氧化鋅粒子 (50 wt%)的混和奈米結構中摻入 11 wt% 的碳點對柔性染料敏化太陽能電池的光電轉換有效。此外,當碳點原始材料之間的莫爾數比(乙二胺:檸檬酸) 為1:1.5時,轉換效率最高 (1.34%),該值比無碳點氧化鋅奈米線與氧化鋅粒子(50 wt%)的高9.7倍。電化學阻抗譜還表明,摻入碳點(1:1.5)在氧化鋅奈米線與氧化鋅粒子(50 wt%)的柔性染料敏化太陽能電池的電荷轉移電阻最低。
在研究的第二部分,儘管學界對不同氧化鋅的大小和種類有許多研究,但對裸金屬氧化物的量子簇合成研究卻很少。本研究的研究目標是創建簇/奈米粒子並使用飛秒激光輻照以增加氧化鋅的電學、光學和化學功能。飛秒脈衝激光輻照沉積技術在這裡被用於以前驅物水溶液 (pH = 5.5) 和鹼性水溶液 (pH = 10.2) 製造氧化鋅。這些產品被分別命名為 ZnO(F5.5) 和 ZnO(F10.2) 。在這個過程中,鋅離子與水分子分解產生羥基自由基反應(OH*) 反應,Zn(OH*) 2被飛秒激光能量脫水來製造氧化鋅。1-30分鐘輻射後ZnO(F 5.5 )的球形粒徑被發現與ZnO(F 10.2)球體(10-13 nm)相比較小(1-7 nm)。此外,ZnO(F 5.5)顯示出更大的能隙(5.3-5.6 eV),更長的電子壽命(40.4ms),以及與ZnO(F 10.2)相比更高的發射強度(483 a.u.)。而關於有害污染物的光降解,在激光照射1分鐘時製備的ZnO(F 5.5)通過在紫外光照射下 15 分鐘以減少甲醛98.5%。然而,ZnO(F 10.2)和其他較大的各種形狀的氧化鋅顆粒,甲醛轉化需要更長的時間。這些結果證實超小的 ZnO 納米粒子(1 nm 大小)可以稱為量子簇,並且具有更好的電學、光學和光催化特性。特別是高效的光催化反應可用於研究氧化鋅量子簇的生態和環境影響。


In the first work, ZnO-nanowire, ZnO-nanoparticles, and Cdots were synthesized by hydrothermal, polyol solvent, and hydrothermal methods, respectively. ZnO-nanowire and nanoparticles are used for the photonics, solar cells, and photovoltaic devices, and the composites were characterized. ZnO nanowires and nanoparticles have been evaluated the effects of added carbon dots (C-dots) on the performance of photovoltaic devices. The photovoltaic conversion of flexible dye-sensitized solar cells (DSSCs) was effective for ZnO NW/ZnO NP (50 wt%) and the incorporation of 11 wt% Cdots in the hybrid nanostructures. Additionally, when the mole ratio (ethylene diamine: citric acid) between raw materials of C-dots was 1:1.5, the conversion efficiency was highest (1.34%), and this value was 9.7 times higher than that of FDSSCs ZnO NW/ZnO NP (50 wt%) without C-dots. Electrochemical impedance spectroscopy also indicated that the charge transfer resistance property was lowest for Cdots(1:1.5)-hybridized ZnO NW/ZnO NP (50 wt%) FDSSCs.
In the second part of the study, despite various studies on the preparation of different types and sizes of ZnO, the synthesis of quantum clusters of bare metal oxide has rarely been reported. The research goals of this study were to create clusters/nanoparticles using femtosecond laser irradiation to increase the electrical, optical, and chemical functionalities of ZnO. Femtosecond pulsed laser irradiation deposition technology was used here to produce ZnO from a precursor in water (pH = 5.5) and an aqueous alkaline solution (pH = 10.2). These products were named ZnO(F5.5) and ZnO(F10.2), respectively. In this procedure, Zn ions react with hydroxyl radicals (OH*) produced by the decomposition of water molecules, and Zn(OH*)2 is dehydrated by femtosecond laser energy to create ZnO. The spherical particle size of ZnO(F5.5) after 1-30 min irradiation was found to be small (1-7 nm) compared to that of ZnO(F10.2) spheres (10-13 nm). Furthermore, ZnO(F5.5) shows a larger band gap (5.3-5.6 eV), a longer electron lifetime (40.4 ms), and a higher emission intensity (483 a.u.) compared to ZnO(F10.2). For the photodegradation of harmful pollutants, ZnO(F5.5) prepared at 1 min of laser irradiation reduces formaldehyde by 98.5% under UV light irradiation for 15 min. However, ZnO(F10.2) and other larger ZnO particles with various shapes require a longer time for formaldehyde conversion. These results confirm that an ultrasmall ZnO nanoparticle (1 nm in size) can be called a quantum cluster and has better electrical, optical, and photocatalyst characteristics. In particular, efficient photocatalytic reactions may be used to study the ecological and environmental impacts of the ZnO quantum cluster.

摘要 i Abstract iii Acknowledgments v Dedication vi Table of contents vii List of Figure x List of Tables xiv List of Abbreviation xvii Chapter 1: General Introduction 1 1.1. Background 1 1.2. Organization of the thesis 2 1.3. Motivation and objectives 3 1.3.1. Motivation 3 1.3.2. Objectives 6 Chapter 2: Review of Related Literature 8 2.1. Types of Photovoltaic cell 8 2.1.1. Flexible Solar cells 8 2.2. General overview of Flexible Dye-Sensitized Solar cells 8 2.2.1. Zinc Oxide Nanowires Characteristics 8 2.2.2. Zinc Oxide Nanoparticles Characteristics 9 2.2.3. Carbon dots 10 2.2.4. Flexible Dye-Sensitized Solar Cell 10 2.2.5. Nanomaterials and their applications in various fields of research 13 2.2.6. Some distinguishing features of nanomaterials 14 2.2.7. Nanomaterial preparation techniques 16 2.2.8. Nanomaterials' Catalytic Performance 17 2.2.9. Photocatalysis 18 2.2.10. Measuring the photocatalytic reaction's effectiveness 21 Chapter 3: Experimental 24 3.1. Chemicals and reagents 24 3.2. Methods 25 3.2.1. Synthesis of TEMPO-oxidized cellulose nanofiber (TOCNF) 25 3.2.2. Synthesis of zinc oxide nanowires (ZnO NWs) 25 3.2.3. Synthesis of zinc oxide nanoparticles (ZnO NPs) 25 3.2.4. Synthesis of carbon dots (C-dots) 26 3.2.5. Preparation of counter-electrode (CE) film 26 3.2.6. Preparation of working electrode (WE) film 26 3.2.7. Assembling of electrochemical measurements 27 3.2.8. Synthesis of ZnO by mechanical and hydrothermal methods 27 3.2.9. Preparation of ZnO by a femtosecond pulse laser irradiation method 28 3.2.10. Scavenger test 29 3.2.11. Mass weighing under femtosecond laser irradiation without and with the scavenger 29 3.2.12. Photocatalytic degradation of formaldehyde 30 3.3. Material characterization 31 3.3.1. Characterizations at a microscopic level 31 3.3.2. Characterizations based on spectroscopic 31 3.3.3. Surface analyzers and morphological characterization 32 Chapter 4: Preparation of Cellulose nanofiber-based flexible dye-sensitized solar cells 39 4.1. Introduction 39 4.1.1. Objectives and motivations 40 4.2. Results and Discussion 41 4.2.1. Characterization of Materials 41 4.2.2. Photovoltaic Measurement of FDSSCs 53 4.3. Conclusions 62 Chapter 5: Femtosecond pulse laser fabrication of zinc oxide quantum clusters/nanoparticles and their electrical, optical, and photocatalytic characteristics 63 5.1. Introduction 63 5.1.1. Objectives and motivations 65 5.2. Result and Discussion 66 5.2.1. Characterization of Materials 66 5.2.2. Oxidation of Formaldehyde 103 5.3. Conclusions 110 Chapter 6: General Conclusion and future prospective 117 References 119 Appendix 138

References
1. Xiang, C., X. Zhao, L. Tan, J. Ye, S. Wu, S. Zhang, and L. Sun, A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy, 2019, 55, 269-276.
2. Wang, L., M. Sakurai, and H. Kameyama, Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature. J. Hazard. Mater. 2009, 167(1-3), 399-405.
3. Huang, Y., S. Ho, Y. Lu, R. Niu, L. Xu, J. Cao, and S. Lee, Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Mol. 2016, 21(1), 56.
4. Lin, L., Y. Chai, B. Zhao, W. Wei, D. He, B. He, and Q. Tang, Photocatalytic oxidation for degradation of VOCs. Open J. Inorg. Chem. 2013, 3(1), 14-25.
5. Li, W., R. Liang, A. Hu, Z. Huang, and Y. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 2014, 4(70), 36959-36966.
6. Nielsen, D., S. Larsen, and P. Wolkoff, Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch. Toxicol. 2017, 91(1), 35-61.
7. Liao, Y., C. Xie, Y. Liu, H. Chen, H. Li, and J. Wu, Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite. Ceram. Int. 2012, 38(6), 4437-4444.
8. Kang, J., S. Chun, S. Lee, B. Kim, J. Kim, H. Chung, S. Lee, and W. Kim, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS nano, 2012, 6(7), 6400-6406.
9. Zhou, L., Z. Yang, W. Luo, X. Han, S. Jang, J. Dai, B. Yang, and L. Hu, Thermally conductive, electrical insulating, optically transparent bi-layer nanopaper. ACS Appl. Mater. Interfaces, 2016, 8(42), 28838-28843.
10. Narayanan, R., M. Deepa, A. Srivastava, and S. Shivaprasad, Efficient Plasmonic Dye‐Sensitized Solar Cells with Fluorescent Au‐Encapsulated C‐Dots. ChemPhysChem, 2014, 15(6), 1106-1115.
11. Lin, L., M. Yeh, C. Lee, C. Chou, R. Vittal, and K. Ho, Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochim. Acta, 2012, 62, 341-347.
12. Zhang, L. and A. Konno, Development of flexible dye-sensitized solar cell based on predyed zinc oxide nanoparticle. Int. J. Electrochem. Sci, 2018, 13, 344-52.
13. Park, J., A. Lazarides, C. Mirkin, and R. Letsinger, Directed assembly of periodic materials from protein and oligonucleotide‐modified nanoparticle building blocks. Angew. Chem., Int. Ed. 2001, 40(15), 2909-2912.
14. Shipway, N., E. Katz, and I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1(1), 18-52.
15. Bai, L., L. Zhu, C. Ang, X. Li, S. Wu, Y. Zeng, H. Ågren, and Y. Zhao, Iron (III)‐Quantity‐Dependent Aggregation–Dispersion Conversion of Functionalized Gold Nanoparticles. J. Chem. 2014, 20(14), 4032-4037.
16. Cleveland, L., U. Landman, T. Schaaff, M. Shafigullin, P. Stephens, and R. Whetten, Structural evolution of smaller gold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett. 1997, 79(10), 1873.
17. Fedrigo, S., W. Harbich, and J. Buttet, Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. J. Chem. Phys. 1993, 99(8), 5712-5717.
18. Mafuné, F., J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B, 2000, 104(39), 9111-9117.
19. Chien, C. and M. Gupta, Pulse width effect in ultrafast laser processing of materials. Appl. Phys. A, 2005, 81(6), 1257-1263.
20. Chichkov, N., C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 1996, 63(2), 109-115.
21. Salthammer, T., S. Mentese, and R. Marutzky, Formaldehyde in the indoor environment. J. Chem. Rev. 2010, 110(4), 2536-2572.
22. Duong, A., C. Steinmaus, C. McHale, C. Vaughan, and L. Zhang, Reproductive and developmental toxicity of formaldehyde: a systematic review. Mutat. Res., Rev. Mutat. Res. 2011, 728(3), 118-138.
23. Di Paola, A., M. Bellardita, R. Ceccato, L. Palmisano, and F. Parrino, Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. J. Phys. Chem. C, 2009, 113(34), 15166-15174.
24. Zhang, J., L. Sun, C. Liao, and C. Yan, A simple route towards tubular ZnO. Chem. Commun. 2002, (3), 262-263.
25. Zhang, J., L. Sun, H. Pan, C. Liao, and C. Yan, ZnO nanowires fabricated by a convenient route. New J. Chem. 2002, 26(1), 33-34.
26. Huang, W., L. Lyu, Y. Yang, and M. Huang, Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134(2), 1261-1267.
27. Gong, Q., X. Qian, P. Zhou, X. Yu, W. Du, and S. Xu, In situ sacrificial template approach to the synthesis of octahedral CdS microcages. J. Phys. Chem. C, 2007, 111(5), 1935-1940.
28. Shimotsuma, Y., M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, Ultrafast manipulation of self‐assembled form birefringence in glass. Adv. Mater. 2010, 22(36), 4039-4043.
29. Sansoni, L., F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 2010, 105(20), 200503.
30. Krishnakumar, B. and T. Imae, Chemically modified novel PAMAM-ZnO nanocomposite: synthesis, characterization and photocatalytic activity. Appl. Catal., A, 2014, 486, 170-175.
31. Efa, M. and T. Imae, Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J. Taiwan Inst. Chem. Eng. 2018, 92, 112-117.
32. Efa, M. and T. Imae, Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar cells. Electrochim. Acta, 2019, 303, 204-210.
33. Geleta, T. and T. Imae, Influence of additives on zinc oxide-based dye sensitized solar cells. Bull. Chem. Soc. Jpn. 2020, 93(4), 611-620.
34. Geleta, T and T. Imae, Nanocomposite Photoanodes Consisting of p-NiO/n-ZnO Heterojunction and Carbon Quantum Dot Additive for Dye-Sensitized Solar Cells. ACS Appl. Nano Mater. 2021, 4(1), 236-249.
35. Hariharan, C., Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal., A, 2006, 304, 55-61.
36. Baxter, J. and E. Aydil, Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86(5), 053114.
37. Kumar, S., P. Venkateswarlu, V. Rao, and G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 2013, 3(1), 30.
38. Prasannan, A. and T. Imae, One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind. Eng. Chem. Res. 2013, 52(44), 15673-15678.
39. Kang, Z. and S. Lee, Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11(41), 19214-19224.
40. Cho, E., Y. Kang, D. Kim, and J. Kim, Post-growth process for flexible CdS/CdTe thin film solar cells with high specific power. Opt. Express, 2016, 24(10), A791-A796.
41. Mohamad, A., Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: A characterization review. J. Power Sources, 2016, 329, 57-71.
42. Denizalti, S., A. Ali, Ç. Ela, M. Ekmekci, and S. Erten-Ela, Dye-sensitized solar cells using ionic liquids as redox mediator. Chem. Phys. Lett. 2018, 691, 373-378.
43. Sharma, K., V. Sharma, and S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 2018, 13(1), 381.
44. Sayama, K., H. Sugihara, and H. Arakawa, Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 1998, 10(12), 3825-3832.
45. Jeevanandam, J., A. Barhoum, Y. Chan, A. Dufresne, and M. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9(1), 1050-1074.
46. Pitkethly, M., Nanomaterials–the driving force. Mater. Today, 2004, 7(12), 20-29.
47. Roduner, E., Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35(7), 583-592.
48. Su, S., W. Wu, J. Gao, J. Lu, and C. Fan, Nanomaterials-based sensors for applications in environmental monitoring. J. Mater. Chem. A, 2012, 22(35), 18101-18110.
49. Devadas, B. and T. Imae, Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustainable Chem. Eng. 2018, 6(1), 127-134.
50. Kebede, M., T. Imae, C. Wu, and K. Cheng, Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity. Chem. Eng. J. 2017, 311, 340-347.
51. Ueno, S. and M. Sekino, Biomagnetics and bioimaging for medical applications. JoJ. Magn. Magn. Mater. 2006, 304(1), 122-127.
52. Espinosa-Cano, E., R. Suay, M. Aguilar, B. Vázquez, and J. Román, Polymeric nanoparticles for cancer therapy and bioimaging, in Nanooncology. 2018, 137-172.
53. Patra, J., G. Das, L. Fraceto, E. Campos, M. Torres, L. Torres, L. Torres, R. Grillo, M. Swamy, and S. Sharma, Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 2018, 16(1), 1-33.
54. Sharma, P. and M. Bhargava, Applications and characteristics of nanomaterials in industrial environment. Res Dev, 2013, 3(4), 63-72.
55. Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019, 12(7), 908-931.
56. Wang, L., M. Kafshgari, and M. Meunier, Optical Properties and Applications of Plasmonic‐Metal Nanoparticles. Adv. Funct. Mater. 2020, 30(51), 2005400.
57. Brus, L., Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 1986, 90(12), 2555-2560.
58. Hu, H. and W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt. Mater. 2006, 28(5), 536-550.
59. Ejeta, S. and T. Imae, Photodegradation of pollutant pesticide by oxidized graphitic carbon nitride catalysts. J. Photochem. Photobiol., A, 2021, 404, 112955.
59. Thuy, T., S. Maenosono, and N. Thanh, 4 Next Generation Magnetic. Magn. Nanopart. 2012, 99, 117-124.
60. Rao, P., Nanocatalysis: Nanotechnol. Catal. 2010, 4(3), 113-117.
61. Yang, J., D. Wang, H. Han, and C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46(8), 1900-1909.
62. Chiu, Y., T. Chang, C. Chen, M. Sone, and Y. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catal. 2019, 9(5), 430.
63. Abdennouri, M., A. Elhalil, M. Farnane, H. Tounsadi, F. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, and M. Baâlala, Photocatalytic degradation of 2, 4-D and 2, 4-DP herbicides on Pt/TiO2 nanoparticles. J. Saudi Chem. Soc. 2015, 19(5), 485-493.
64. Sandeep, S., K. Nagashree, T. Maiyalagan, and G. Keerthiga, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid-A comparative study in hydrothermal TiO2 and commercial TiO2. Appl. Surf. Sci. 2018, 449, 371-379.
65. Livraghi, S., M. Paganini, E. Giamello, A. Selloni, C. Valentin, and G. Pacchioni, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 2006, 128(49), 15666-15671.
66. Barolo, G., S. Livraghi, M. Chiesa, M. Paganini, and E. Giamello, Mechanism of the Photoactivity under Visible Light of N-Doped Titanium Dioxide. Charge Carriers Migration in Irradiated N-TiO2 Investigated by Electron Paramagnetic Resonance. J. Phys. Chem. C, 2012, 116(39), 20887-20894.
67. Serpone, N. and A. Emeline, Semiconductor Photocatalysis Past, Present, and Future Outlook. Phys. Chem. Lett, 2012, 5 ,673–677.
68. Anandan, K., K. Rajesh, K. Gayathri, S. Sharma, S. Hussain, and V. Rajendran, Effects of rare earth, transition and post transition metal ions on structural and optical properties and photocatalytic activities of zirconia (ZrO2) nanoparticles synthesized via the facile precipitation process. Phys. E. 2020, 124, 114342.
69. Kole, A., C. Tiwary, and P. Kumbhakar, Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination. J. Appl. Phys. 2013, 113(11), 114308.
70. Mostafa, A. and E. Mwafy, Synthesis of ZnO and Au@ ZnO core/shell nano-catalysts by pulsed laser ablation in different liquid media. J. Mater. Res. Technol. 2020, 9(3), 3241-3248.
71. Liu, Y., Q. Zhang, H. Yuan, K. Luo, J. Li, W. Hu, Z. Pan, M. Xu, S. Xu, and I. Levchenko, Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one-and two-step polymer-network gel processes. J. Alloys Compd. 2021, 868, 158723.
72. Mishra, T., Anion supported TiO2–ZrO2 nanomaterial synthesized by reverse microemulsion technique as an efficient catalyst for solvent free nitration of halobenzene. Catal. Commun. 2008, 9(1), 21-26.
73. Isogai, A., T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1), 71-85.
74. Alshehri, A., R. Lewis, C. Pleydell-Pearce, and T. Maffeis, Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. J. Saudi Chem. Soc. 2018, 22(5), 538-545.
75. Devadas, B. and T. Imae, Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustainable Chem. Eng. 2017, 6(1), 127-134.
76. Wan, C., Y. Jiao, and J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A, 2017, 5(8), 3819-3831.
77. Ujihara, M., M. Hsu, J. Liou, and T. Imae, Hybridization of cellulose nanofiber with amine-polymers and its ability on sick house syndrome gas decomposition. J. Taiwan Inst. Chem. Eng. 2018, 92, 106-111.
78. Eskizeybek, V., F. Sarı, H. Gülce, A. Gülce, and A. Avcı, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal., B, 2012, 119, 197-206.
79. Tunç, D., M. Erol, F. Güneş, and M. Sütçü, Growth of ZnO nanowires on carbon fibers for photocatalytic degradation of methylene blue aqueous solutions: An investigation on the optimization of processing parameters through response surface methodology/central composite design. Ceram. Int. 2019, 46(5), 7459-7474.
80. Kim, K., H. Seo, S. Kim, S. Hwang, H. Park, and S. Lim, Effect of ZnO electrodeposited on carbon film and decorated with metal nanoparticles for solar hydrogen production. J. Mater. Sci. Nanotechnol. 2016, 32(10), 1059-1065.
81. Bousalem, S., F. Zeggai, H. Baltache, and A. Benyoucef, Physical and electrochemical investigations on hybrid materials synthesized by polyaniline with various amounts of ZnO nanoparticle. Chem. Phys. Lett. 2020, 746, 137095.
82. Brinkmann, G., J. Goedgebeur, and B. McKay, The generation of fullerenes. J. Chem. Inf. Model. 2012, 52(11), 2910-2918.
83. Voora, K. and K. Jordan, Nonvalence correlation-bound anion states of spherical fullerenes. Nano Lett. 2014, 14(8), 4602-4606.
84. Liu, Q., C. Zeng, Z. Xie, L. Ai, Y. Liu, Q. Zhou, J. Jiang, H. Sun, and S. Wang, Cobalt@ nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Appl. Catal., B, 2019, 254, 443-451.
85. Li, H., Q. Zhou, F. Liu, W. Zhang, Z. Tan, H. Zhou, Z. Huang, S. Jiao, and Y. Kuang, Biomimetic design of ultrathin edge-riched FeOOH@ Carbon nanotubes as high-efficiency electrocatalysts for water splitting. Appl. Catal., B, 2019, 255, 117755.
86. Lin, J., Y. Xu, J. Wang, B. Zhang, C. Wang, S. He, and J. Wu, Preinserted Li metal porous carbon nanotubes with high Coulombic efficiency for lithium-ion battery anodes. Chem. Eng. J. 2019, 373, 78-85.
87. Graydon, O., Flexible coating. Nat. Photonics, 2019, 13(7), 438-438.
88. Gorrini, F., R. Giri, C. Avalos, S. Tambalo, S. Mannucci, L. Basso, N. Bazzanella, C. Dorigoni, M. Cazzanelli, and P. Marzola, Fast and sensitive detection of paramagnetic species using coupled charge and spin dynamics in strongly fluorescent nanodiamonds. ACS Appl. Mater. Interfaces, 2019, 11(27), 24412-24422.
89. Hsieh, F., S. Sotoma, H. Lin, C. Cheng, T. Yu, C. Hsieh, C. Lin, and H. Chang, Bioorthogonal Fluorescent Nanodiamonds for Continuous Long-Term Imaging and Tracking of Membrane Proteins. ACS Appl. Mater. Interfaces, 2019, 11(22), 19774-19781.
90. Feng, J., H. Ding, and Y. Ma, Self-assembly of fullerenes and graphene flake: A molecular dynamics study. Carbon, 2015, 90, 34-43.
91. Hua, X., Y. Bao, J. Zeng, and F. Wu, Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: High-resolution cell imaging and in vivo tracking. ACS Appl. Mater. Interfaces, 2019, 11(36), 32647-32658.
92. Bai, L., H. Yan, Y. Feng, W. Feng, and L. Yuan, Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: synthesis, emission mechanism, Fe3+ probe and cell imaging. Chem. Eng. J. 2019, 373, 963-972.
93. Berenguel M., I. Gómez, B. Fernández, P. Couceiro, J. Chamarro, L. Vallvey, A. Salinas, and M. Puyol, An LTCC monolithic microreactor for the synthesis of carbon dots with photoluminescence imaging of the reaction progress. Sens. Actuators, B, 2019, 296, 126613.
94. Zhang, Y., M. Ram, E. Stefanakos, and D. Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 20. 1–22
95. Chen, W., H. Yu, Y. Liu, P. Chen, M. Zhang, and Y. Hai, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 2011, 83(4), 1804-1811.
96. AlZoubi, T., H. Qutaish, E. Shawwa, and S. Hamzawy, Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process. Opt. Mater. 2018, 77, 226-232.
97. Fakhari, S., M. Jamzad, and H. Fard, Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem. Lett. Rev. 2019, 12(1), 19-24.
98. Saraswat, K., V. Kishore, K. Deepika, N. Saxena, and T. Sharma, Band gap studies on Se-Te-Sn ternary glassy films. Chalcogenide Lett. 2007, 4(5), 61-64.
99. Tauc, J., A. Menth, and D. Wood, Optical and magnetic investigations of the localized states in semiconducting glasses. Phys. Rev. Lett. 1970, 25(11), 749.
100. Hu, H., X. Huang, C. Deng, X. Chen, and Y. Qian, Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Mater. Chem. Phys. 2007, 106(1), 58-62.
101. Chen, X., Y. Shen, W. Zhang, J. Zhang, D. Wei, R. Lu, L. Zhu, H. Li, and Y. Shen, In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor. Appl. Surf. Sci. 2018, 435, 1096-1104.
102. Selvarajan, E. and V. Mohanasrinivasan, Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater. Lett. 2013, 112, 180-182.
103. Neykova, N., J. Stuchlik, K. Hruska, A. Poruba, Z. Remes, and O. Georgievski, Study of the surface properties of ZnO nanocolumns used for thin-film solar cells. Beilstein J. Nanotechnol. 2017, 8, 446-451.
104. Wang, D., Y. Zhang, M. Su, T. Xu, H. Yang, S. Bi, X. Zhang, Y. Fang, and J. Zhao, Design of Morphology-Controllable ZnO Nanorods/Nanopariticles Composite for Enhanced Performance of Dye-Sensitized Solar Cells. Nanomaterials (Basel), 2019, 9(7), 931
105. Kazmerski, L., National Renewable Energy Laboratory (NREL). Golden, Co, 2011. 269, 2017-2019
106. Jose, R., V. Thavasi, and S. Ramakrishna, Metal oxides for dye‐sensitized solar cells. J. Am. Ceram. Soc. 2009, 92(2), 289-301.
107. Li, Y., B. Zhang, J. Zhao, Z. Ge, X. Zhao, and L. Zou, ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Ap Appl. Surf. Sci. 2013, 279, 367-373.
108. Luo, S., H. Shen, W. Hu, Z. Yao, J. Li, D. Oron, N. Wang, and H. Lin, Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Adv. 2016, 6(25), 21156-21164.
109. Xue, Z., X. Liu, N. Zhang, H. Chen, X. Zheng, H. Wang, and X. Guo, High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells. ACS Appl. Mater. Interfaces, 2014, 6(18), 16403-16408.
110. Baiju, G., B. Murali, R. Rao, K. Jayanarayanan, and D. Kumaresan, Heat sink assisted elevated temperature sintering process of TiO2 on polymer substrates for producing high performance flexible dye-sensitized solar cells. Chem. Eng. Process. 2020, 149, 107817.
111. Atanacio, X., W. Rodríguez, E. Mireles, J. Robles, P. González, and E. Rangel, Improving performance of ZnO flexible dye sensitized solar cell by incorporation of graphene oxide. Microsyst. Technol. 2020, 26, 1-9.
112. Luo, Q., B. Wang, and Y. Cao, Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. J. Alloys Compd. 2017, 695, 3324-3330.
113. Zhang, L. and A. Konno, Development of flexible dye-sensitized solar cell based on predyed zinc oxide nanoparticle. Int. J. Electrochem. Sci. 2018, 13, 344-352.
114. Park, H., C. Ha, and J. Lee, Advances in piezoelectric halide perovskites for energy harvesting applications. J. Mater. Chem. A, 2020, 8(46), 24353-24367.
115. Göktaş, S. and A. Göktaş, A comparative study on recent progress in efficent ZnO based nanocomposite and heterojunction photocatalysts: A review. J. Alloys Compd. 2021, 863, 158734.
116. Mustapha, S., M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib, A. Ajala, and A. Mohammed, Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl. Water Sci. 2020, 10(1), 1-36.
117. Lanje, S., S. Sharma, R. Ningthoujam, J. Ahn, and R. Pode, Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol. 2013, 24(1), 331-335.
118. Liu, Q., T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, and A. Arima, Ammonia-Induced Seed Layer Transformations in a Hydrothermal Growth Process of Zinc Oxide Nanowires. J. Phys. Chem. C, 2020, 124(37), 20563-20568.
119. Zhao, D., J. Li, S. Sathasivam, and C. Carmalt, n-Type conducting P doped ZnO thin films via chemical vapor deposition. RSC Adv. 2020, 10(57), 34527-34533.
120. Sasaki, A., W. Hara, A. Matsuda, N. Tateda, S. Otaka, S. Akiba, K. Saito, T. Yodo, and M. Yoshimoto, Buffer-enhanced room-temperature growth and characterization of epitaxial ZnO thin films. Appl. Phys. Lett. 2005, 86(23), 231911.
121. Scholl, J., A. Koh, and J. Dionne, Quantum plasmon resonances of individual metallic nanoparticles. Nat. 2012, 483(7390), 421-427.
122. Küper, S. and M. Stuke, Femtosecond UV excimer laser ablation. Appl. Phys. B, 1987, 44(4), 199-204.
123. Bellouard, Y., A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevičius, P. Kazansky, and O. Chappuis, The femtoprint project. J. Laser Micro/Nanoeng. 2012, 7(1), 1-10.
124. Gattass, R. and E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics. 2008, 2(4), 219-225.
125. Ahmed, S., M. Rasul, R. Brown, and M. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manage. 2011, 92(3), 311-330.
126. Krishnakumar, B., T. Imae, J. Miras, and J. Esquena, Synthesis and azo dye photodegradation activity of ZrS2–ZnO nano-composites. Sep. Purif. Technol. 2014, 132, 281-288.
127. Bugrov, N., I. Rodionov, I. Zvereva, R. Smyslov, and O. Almjasheva, Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnol. 2016, 13(1-3), 147-157.
128. Prayer, D., A. Barkovich, D. Kirschner, L. Prayer, T. Roberts, J. Kucharczyk, and M. Moseley, Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. Am. J. 2001, 22(8), 1572-1576.
129. Adams, K., D. Lyon, and P. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006, 40(19), 3527-3532.
130. Zhang, Z. and T. Imae, Study of surface-enhanced infrared spectroscopy: 1. Dependence of the enhancement on thickness of metal island films and structure of chemisorbed molecules. J. Colloid Interface Sci. 2001, 233(1), 99-106.
131. Al-Nassar, S. and F. Hussein, The effect of laser pulse energy on ZnO nanoparticles formation by liquid phase pulsed laser ablation. J. Mater. Res. Technol. 2019, 8(5), 4026-4031.
132. Nakamura, T., H. Magara, Y. Herbani, and S. Sato, Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl. Phys. A, 2011, 104(4), 1021-1024.
133. Schneider, T., D. Firak, R. Ribeiro, and P. Zamora, Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys. Chem. Chem. Phys. 2020, 22(27), 15723-15733.
134. Abedini, A., R. Daud, M. Hamid, N. Othman, and E. Saion, A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res. Lett, 2013, 8(1), 1-10.
135. Biron, S., V. Santos, and C. Bergmann, Synthesis and Characterization of Zinc Oxide Obtained by Combining Zinc Nitrate with Sodium Hydroxide in Polyol Medium. Mater. Res., 2020, 23(2).
136. Deka, A. and K. Nanda, A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions. AIP Advances, 2013, 3(6), 062104.
137. Duresa, W., D. Kuo, K. Ahmed, M. Zeleke, and H. Abdullah, Highly enhanced photocatalytic Cr (vi) reduction using In-doped Zn (O, S) nanoparticles. New J. Chem. 2019, 43(22), 8746-8754.
138. Chen, L., B. Kishore, M. Walker, C. Dancer, and E. Kendrick, Nanozeolite ZSM-5 electrolyte additive for long life sodium-ion batteries. Chem. Commun. 2020, 56(78), 11609-11612.
139. Bera, D., L. Qian, T. Tseng, and P. Holloway, Quantum dots and their multimodal applications: a review. Mater. 2010, 3(4), 2260-2345.
140. Tauc, J., Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3(1), 37-46.
141. Kumar, V., J. Gaur, M. Sharma, and T. Sharma, Study of Structure, Composition and Optical Properties of ZnS0. 5 Se0. 5 Films as a Function of Sintering Temperature. J. Optoelectron. Adv. Mater. 2009, 1(1), 52-58.
142. Lakshmi, R., S. Aruna, C. Anandan, P. Bera, and S. Sampath, EIS and XPS studies on the self-healing properties of Ce-modified silica-alumina hybrid coatings: Evidence for Ce (III) migration. Surf. Coat. Technol. 2017, 309, 363-370.
143. Merl, K., P. Panjan, M. Čekada, and M. Maček, The corrosion behavior of Cr-(C, N) PVD hard coatings deposited on various substrates. Electrochim. Acta, 2004, 49(9-10), 1527-1533.
144. Nash, T., The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55(3), 416-421.
145. Nash, T., The colorimetric estimation of formaldehyde by means of the Hentisch reaction. J. biol. Chem., 1953, 55, 412-416.
146. Zhang, J., P. Yang, J. Zheng, J. Li, S. Lv, T. Jin, P. Xu, C. Cheng, and Y. Zhang, Degradation of gaseous HCHO in a rotating photocatalytic fuel cell system with an absorption efficiency of up to 94%. Chem. Eng. J. 2019, 392, 123634.
147. Darvishi, R., A. Rezaee, M. Safari, A. Khataee, and B. Karimi, Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin. Water Treat. 2015, 53(6), 1613-1620.
148. Fam, Y. and T. Imae, Catalytic oxidation of formaldehyde in water by calcium phosphate-based Pt composites. RSC Adv. 2015, 5(21), 15944-15953.
149. Ali, T., A. Ahmed, U. Alam, I. Uddin, P. Tripathi, and M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018, 212, 325-335.
150. Zou, L., Y. Luo, M. Hooper, and E. Hu, Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst. Chem Eng Process, 2006, 45(11), 959-964.

無法下載圖示 全文公開日期 2025/04/10 (校內網路)
全文公開日期 2027/04/10 (校外網路)
全文公開日期 2032/04/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE