簡易檢索 / 詳目顯示

研究生: 馮詩翰
Shr-Han Feng
論文名稱: 以超高頻電漿輔助化學氣相沉積法製備矽晶異質接合太陽電池元件之研究
Preparation of Silicon Heterojunction solar Cells by VHF-PECVD System
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 超高頻電漿輔助化學氣相沉積鈍化本質氫化非晶矽p型微晶矽異質接合太陽電池
外文關鍵詞: VHF-PECVD, intrinsic a-Si:H, p-type μc-Si:H, passivation, heterojunction solar cells
相關次數: 點閱:202下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以超高頻電漿輔助化學氣相沉積系統(VHF-PECVD)製備本質氫化非晶矽膜層用於鈍化單晶矽基材,研究重點之一為與射頻電漿輔助化學氣相沉積系統(RF-PECVD)製備氫化非晶矽膜層來作比較外,另外又探討如何製備微晶矽薄膜作為異質接合太陽電池的p型窗口層及對元件特性的影響。
    在本質氫化非晶矽膜層鈍化單晶矽晶片的實驗結果顯示,以超高頻電漿輔助化學氣相沉積系統所製備的本質氫化非晶矽薄膜具有較佳的鈍化品質。於矽晶片的兩面成長本質氫化非晶矽膜層後,其矽晶片的有效載子生命週期達 850 μs,暗示開路電壓為 701 mV。
    另一方面,在成長p型微晶矽薄膜沉積於本質氫化非晶矽表面的研究,使用超高頻電漿輔助化學氣相沉積系統,並在本質氫化非晶矽成長膜厚僅數十奈米的p型微晶矽薄膜,獲得暗導電率為元件級的p型微晶矽薄膜。
    最後,利用多重腔體連結式PECVD裝置製作矽晶異質接合太陽能電池,獲得元件最佳的開路電壓、電流密度及填充因子分別為633 mV、33 mA/cm2及65.2 %,光電轉換效率達13.6%。


    In this thesis, we fabricated the intrinsic hydrogenated amorphous silicon/monocrystalline silicon (a-Si:H/c-Si) symmetrical heterostructure by PECVD . Emphasis was placed upon comparing the passivation property of the intrinsic a-Si:H layers. Also, the p-type hydrogenated microcrystalline silicon (μc-Si:H) films were prepared using various plasma excitation frequencies, and deposited on various heterogeneous materials to simulate the grow behavior in the real Silicon heterojunction solar cell fabrication.
    In the first part, the result showed that the films prepared by VHF-PECVD exhibit much better interfacial passivation property compare with those prepared by the conventional RF-PECVD. In addition, the deposition behavior of p-type μc-Si:H thin layer showed dependence on the type of substrates used. For example, a p-type μc-Si:H layer with a dark conductivity of >1×10-4 S/cm can be achieved.
    Finally, we used connected PECVDs reactors to fabricate silicon heterojunction solar cells. Up to date, the best cell was characterize by open-circuit voltage(Voc) = 633 mV, short-circuit current density(Jsc) = 33 mA/cm2 and fill factor(FF) = 65.2 %, respectively. The optoelectronic conversion efficiency of 13.6 % was achieved.

    摘要 I Abstract III 誌謝 IV 目錄 VI 圖索引 IX 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 矽晶異質接合太陽能電池的製程技術 4 1.3 非晶矽薄膜的性質與成長機制 11 1.4 微晶矽薄膜的性質與成長機制 14 1.5 矽晶異質接合太陽能電池之光電轉換原理 19 1.6矽晶異質接合太陽電池的p型窗口層 24 1.7研究目的與方向 29 第二章 實驗相關部分 31 2.1實驗藥品與氣體 31 2.2實驗裝置及步驟 34 2.3實驗製作流程 37 2.3.1 單層實驗步驟及量測 37 2.3.2 元件製作流程圖 38 2.4分析儀器 39 2.4.1表面輪廓儀(Surface Profiler) 39 2.4.2 紫外光/可見光光譜儀(UV/VIS/NIR) 40 2.4.3 拉曼光譜儀(Raman) 43 2.4.4 IV量測系統(IV) 45 2.4.5 傅立葉紅外線光譜儀(FT-IR) 46 2.4.6太陽光模擬器 (solar simulator) 49 第三章 結果與討論 53 3.1本質氫化非晶矽薄膜的製備 53 3.1.1本質氫化非晶矽的厚度對矽晶異質接合的影響 54 3.1.2 p型微晶矽薄膜的製備 55 3.2.1電漿功率對p型微晶矽長膜的影響 56 3.2.2氫氣稀釋比對p型微晶矽薄膜成長的影響 64 3.2.3薄膜厚度對p型微晶矽薄膜的影響 70 3.2.4 p型微晶矽薄膜成長於本質氫化非晶矽上的行為 74 3.3 以p型微晶矽作為窗口層時的異質接合太陽電池製作 76 第四章 結論 84 參考文獻 85 附錄 91 作者簡介 92

    1. 太陽光電系列課程-工業技術研究院 pp.8 (2007).
    2. D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., Vol.25, pp.676-677 (1954).
    3. Wiesmann, H., A. K. Ghosh, et al. “a-Si : H produced by high-temperature thermal decomposition of silane. ” Journal of Applied Physics. 50: 3752-3754. (1979).
    4. Matsumura.H, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (cat-CVD) Method” Jpn. J. Appl. Phys. 30 L1522 (1991).
    5. Munoz Cervantes, D., “Silicon Heterojunction Solar Cells Obtained by Hot-Wire CVD”, Ph.D dissertation, National Renewable Energy Labrotory. (2008).
    6. R. C. Chittick, J. H. Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon,” J. Electrochem. Soc., Vol.116, pp.77-81 (1969).
    7. R.A.Street, Hydrogenated Amorphous Silicon (2005)
    8. Staebler, D.L. and C.R. Wronski, “Reversible Conductivity Changes in Discharge-Produced Amorphous Si” Appl. Phys. Lett., Vol.31, pp.292-294 (1977).
    9. Pinarbasi, M., M.J. Kushner, and J.R. Abelson, “Effect of Hydrogen Content on The Light-Induced Defect Generation in Direct-Current Magnetron Reactively” J. Appl. Phys., Vol.68, pp.2255-2264 (1990)

    10. Branz, H.M., “Hydrogen Collision Model of Light-Induced Metastability in Hydrogenated Amorphous Silicon” Solid State Commun., Vol.105, pp387-391 (1998).
    11. S. Oda, J. Noda, M. Matsumura, “Diagnostic Study of VHF Plasma and Deposition of Hydrogenated Amorphous Silicon Films” Jpn. J. Appl. Phys. 29, 1889 (1990).
    12. S. Oda, “Frequency effects in processing plasmas of the VHF band ”Plasma Sources Sci.Technol., 26 (1993).
    13. W. Schwarzenbach, A. Howling,M. Fivaz,S. Brunner,C. Hollenstein, “Sheath impedance effects in very high frequency plasma experiments” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , vol.14, no.1, pp.132-138, (1996).
    14. F. Finger, U. Kroll, V. Viret, A. Shah, W. Beyer, X. -M. Tang, J. Weber, A. Howling, and Ch. Hollenstein, “Influences of a high excitation frequency (70 MHz) in the glow discharge technique on the process plasma and the properties of hydrogenated amorphous silicon” J. Appl. Phys. 71, 5665 (1992).
    15. U. Kroll, A. Shah, H. Keppner, J. Meier, P. Torres, D. Fischer, “Potential of VHF-plasmas for low-cost production of a-Si:H solar cells”Sol. Energ. Mate. Sol. Cells, 48, 343 (1997).
    16. H .Takatsuka, M. Noda, et al. “Development of high efficiency large area silicon thin film modules using VHF-PECVD. ” Solar Energy , 77(6): 951-960. (2004).
    17. S.Olibet, E. Vallat-Sauvain, et al. “Properties of interfaces in amorphous/crystalline silicon heterojunctions. ” physica status solidi (a) 207(3): 651-656.(2010).
    18. A.Descoeudres, L. Barraud, et al. "The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality." Applied Physics Letters 97(18) 183505.(2010).
    19. M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogentated amorphous silicon and germanium,” Phys. Rev. B, Vol.35, pp.5666-5701 (1987).
    20. M. H. Cohen, H. Fritzsche and S. R. Ovshinsky, “Simple band model for amorphous semiconducting Alloys,” Phys. Rev. Lett., Vol.22, pp.1065-1068 (1969).
    21. D. E. Carson & C. R. Wronski, “Amorphous silicon Solar Cells,” Pennsylvania State University, USA (2007).
    22. C. Droz, “Thin film microcrystalline silicon layers and solar cells:microstructure and electrical performances,” thesis, Department of Microtechnique, University of Neuchatel, (2003).
    23. A. Matsuda, “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma,” J. Non-Cryst. Solids, Vol.59 & 60, pp.767-774 (1983).
    24. A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films, Vol.337, pp.1-6 (1999).
    25. C. C. Tsai, G. B. Anderson, R. Thompson and B. Wacker, “Control of silicon network structure in plasma deposition,” J. Non-Cryst. Solids, Vol.114, pp.151-153 (1989).
    26. K. Nakamura, K. Yoshino, S. Tekeoka and I. Shimizu, “Roles of atomic hydrogen in chemical annealing,” Jpn. J. Appl. Phys, Vol.34, pp.442-449, (1995).
    27. R. W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce and C. R. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studies by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells, Vol.78, pp.143-180 (2003).
    28. A. V. Shan, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. wyrsch, U. Kroll, C. Droz and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt: Res. Appl., Vol.12, pp.113-142 (2004)
    29. http://www.thefullwiki.org/P-n_junction
    30. L.Korte, E. Conrad, et al.“Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. ” Solar Energy Materials and Solar Cells 93(6-7): 905-910.(2009).
    31. S.Hanafusa and H.Kuwano, Y., “Developement of New a-si c-si Heterojunction Solar Cell Acj-Hit (Artificially Constructed Junction-Heterojunction with Intrinsic Thin Layer).” Japn J.Appl Phys Part 1-Regular Papers Short Notes & Review Papers, Vol. 31, No. 11, pp. 3518-3522 (1992)
    32. J. P. Kleider, C. Longeaud, M. Gauthier, M. Meaudre, R. Meaudre, R. Butte, S. Vignoli and P. R. Cabarrocas, “Very low densities of localized states at the Fermi level in hydrogenated polymorphous silicon from capacitance and space-charge limited,” Appl. Phys. Lett., Vol.75, No.21, pp.3351-3353 (1999).
    33. S. Ghosh, A. De, S. Ray and A. K. Barua, “Role of hydrogen dilution and diborane doping on the growth mechanism of p-Type microcrystalline silicon films prepared by photochemical vapor deposition,” J. Appl. Phys., Vol.71, pp.5205-5211 (1992).
    34. R. Saleh and N. H. Nickel, “Raman spectroscopy of B-doped microcrystalline silicon films,” Thin Solid Films, Vol.427, pp.266-269 (2003).
    35. M. Cleef, J. Rath, et al.“Performance of heterojunction p + microcrystalline silicon n crystalline silicon solar cells , J. Appl. Phys. 82, 6089 (1997)
    36. J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure,” Sol. Energy Mater. Sol. Cells, Vol.53, pp.189-203 (1998).
    37. K. Shimakawa, “Electronic and optical properties of hydrogenated microcrystalline silicon: review,” J. Mater. Sci.: Mater. Electron., Vol.15, pp.63-67 (2004)
    38. S. Hamma and P. R. Cabarrocas, “Low-temperature Growth of Thick Intrinsic and Ultrathin Phosphorous or Boron-doped Microcrystalline Silicon Films- Optimum Crystalline Fractions for Solar Cell Applications,” Sol. Energy Mater. Sol. Cells, Vol.69, pp.217-239 (2001).
    39. Y .Hishikawa, N.Nakamura, , et al. “Interference-Free Determination of the Optical-Absorption Coefficient and the Optical Gap of Amorphous-Silicon Thin-Films” Jpn. J. Appl. Phys., Vol.30, pp.1008-1014 (1991)
    40. Matsuda, A., Takai, M., Nishimoto, T., and Kondo, M., “Control of Plasma Chemistry for Preparing Highly Stabilized Amorphous Silicon at High Growth Rate” Sol. Energy Mater. & Sol. Cells., Vol.78, pp.3-26 (2003)
    41. Sinton, R.A. and A. Cuevas, “Contactless Determination of Current-Voltage Characteristics and Minority-Carrier Lifetimes in Semiconductors from Quasi-steady-state Photoconductance data”, Appl Phys Lett, Vol. 69, No. 17, pp. 2510-2512 (1996)
    42. Sinton consulting, I., WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual.
    43. M. Z.Burrows, U. K. Das, et al. , “Role of hydrogen bonding environment in a-Si : H films for c-Si surface passivation. ” Journal of Vacuum Science & Technology A 26(4): 683-687.(2008).

    無法下載圖示 全文公開日期 2016/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE