簡易檢索 / 詳目顯示

研究生: 杜弘彬
Hong-bin Du
論文名稱: 昇壓式功因修正器之傳導性電磁干擾高頻模型確認─模擬與實測
Confirmation of the High Frequency Model for Conducted EMI in Passive Components ─ Simulation and Measurements
指導教授: 陳南鳴
Nan-Ming Chen
口試委員: 呂錦山
Ching-Shan Leu
潘晴財
Ching-Tsai Pan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 功因修正器電子電路高頻特性電磁干擾
外文關鍵詞: Power Factor Corrector, Power Electronics, High-Frequency Characteristics, Electromagnetic Interference
相關次數: 點閱:326下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的在探討傳導性電磁干擾模型的一般化,選用的架構為昇壓式功因修正器電路,並參考文獻[1]之高頻模型的建立方式,來探討傳導性電磁干擾實測與模擬波形的吻合程度。本文的實驗步驟可分為兩大部分。第一部分為低頻分析,是為了完成昇壓式功因修正器之正常動作模擬。第二部份為高頻分析,考量傳導性電磁干擾的實際量測頻段為150 kHz ~ 30 MHz,將需考量的低頻元件加入高頻元件特性。
    首先個別進行元件模擬與實測之阻抗與相位曲線吻合程度,再套用模型於電路中以完成傳導性電磁干擾之電路模擬架構,最後將模擬的雜訊與實際量測的雜訊做比較,以探討模型的應用範圍是否適用於傳導性電磁干擾的量測頻段。以事先預測電磁干擾問題,如此將可降低電路設計的時間與成本。
    藉由文獻[1]高頻模型的套用結果,得知不同電路的電磁干擾將有不同的影響,其包含電路架構、元件特性、電路設計及PCB佈局等,因此高頻模型可再考量更多參數,如元件工作溫度及磁性元件的導磁係數等,以達成更完整的高頻模型。另外,影響EMI的因素還包含一些環境問題,如測試連結線材及雜訊背景值等,因此上述的條件若能再考量進去,將有助於完成EMI模擬電路。


    The purpose of this thesis is to investigate the generalization of the conducted EMI model developed earlier by Lin [1]. Both measurements and simulation for conducted EMI are performed to verity the high frequency model proposed earlier by Lin [1]. The application circuit is that of boost power factor correctors. Experiment steps: (1) simulation of a boost power factor corrector in operation to identify low frequency problems, (2) including high frequency characteristics in low frequency component models to account for the 150 kHz ~ 30 MHz frequency range of conducted EMI in practical measurements.
    First, measurements and simulation for each separate component are conducted to verify their impedances and phase curves. The model is included in the circuit to simulate conducted EMI. Finally, simulation and measured EMI noises are compared to investigate whether the model is suitable for the frequency range of conducted EMI or not. The problematic electromagnetic interference can be predicted. Thus, time and cost of circuit design can be reduced.
    Considering the results of applying high-frequency model by Lin [1], the comparison results show that the EMI of different circuits will have different influence factors, including circuit structure, component characteristics, circuit design, PCB layout, and so on. Therefore, the high-frequency model should be concerned about more parameters, such as working temperatures of components, the permeability of magnetic components, and so on, for designing a further complete high-frequency model. In addition, the factors influencing EMI also include some environmental problems, such as the testing cables of measuring instruments, noise value, and so on. Thus, if the condition mentioned above can be considered, the model will facilitate EMI simulations of circuits.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的及方法 1 1.3 論文內容概述 3 第二章 電磁干擾相關知識與量測設備介紹 4 2.1 電磁相容基礎知識 4 2.2 電磁干擾防制規範 5 2.3 傳導性電磁干擾實驗規劃 7 2.4 測試接收器之訊號檢測 9 2.4.1 峰值檢測 9 2.4.2 準峰值檢測 10 2.4.3 平均值檢測 11 2.5 傳導性電磁干擾量測之系統架構 12 2.5.1 傳導性電磁干擾總雜訊量測之系統架構 12 2.5.2 傳導性電磁干擾共模及差模雜訊量測之系統架構 12 2.6 電源傳輸阻抗穩定網路之工作原理說明 14 2.7 共模及差模雜訊電壓與電流關係 15 2.8 雜訊分離器之工作原理說明 17 第三章 電路元件之高頻特性分析 20 3.1 試驗電路之硬體架構 20 3.2 考量高頻特性之功率半導體元件模型建立與設定 23 3.3 考量高頻特性之被動元件模型建立與推導 24 3.3.1電感 24 3.3.2電容 29 3.4 試驗之功率半導體元件模型 30 3.5 試驗之被動元件模型 34 3.5.1 昇壓電感模型化 34 3.5.2 輸出電容模型化 37 3.6 印刷電路板之導線T模型 40 3.7 功率開關與散熱片間之共模寄生電容計算 44 3.8 電源傳輸阻抗穩定網路及雜訊分離器模型化 46 3.8.1 電源傳輸阻抗穩定網路模型化 46 3.8.2 雜訊分離器模型化 47 第四章 傳導性電磁干擾波形之測試電路分析、實測與模擬 51 4.1 試驗之模擬電路 51 4.2 電路實測與模擬波形比對 51 第五章 實驗結果與討論 57 5.1 共模與差模雜訊之迴路分析 57 5.1.1 共模雜訊之迴路分析 58 5.1.2 差模雜訊之迴路分析 60 5.2 昇壓電感共振頻率點對EMI雜訊之影響 61 5.3 高頻寬電容對差模雜訊之影響 63 5.4 共模寄生電容對共模雜訊之影響 66 第六章 結論與未來研究方向 68 6.1 結論 68 6.2 未來研究方向 69 參考文獻 70

    [1] 林國華,「兩級式電能轉換器之傳導性電磁干擾模擬」,國立台灣科技大學碩士論文,民國九十四年五月。
    [2] V. Tarateeraseth, I. A. Maio and F. G. Canavero, “Assessment of Equivalent Noise Source Approach for EMI Simulations of Boost Converter,” 2009 20th International Zurich Symposium on Electromagnetic Compatibility, Zurich, Switerland, pp. 353-356, (2009).
    [3] K. Mainali and R. Oruganti, “Simple Analytical Models to Predict Conducted EMI Noise in a Power Electronic Converter,” IEEE 33rd Annual IECON’07, Taipei, Taiwan, pp. 1930-1936, (2007).
    [4] S. Brehaut, M.O. El Bechir, J.-C. Le Bunetel, D. Magnon and A. Puzo, “Analysis EMI of a PFC on the Band Pass 150 kHz-30 MHz for a Reduction of the Electromagnetic Pollution,” IEEE 19th Annual APEC’04, Vol. 2, Anaheim, California, USA, pp. 695-700, (2004).
    [5] S. Wang, F.C. Lee and W.G. Odendaal, “Single Layer Iron Powder Core Inductor Model and Its Effect on Boost PFC EMI Noise,” IEEE 34th Annual PESC’03, Vol. 2, Acapulco, Mexico, pp. 847-852, (2003).
    [6] F. Zare, “EMC and Modern Power Electronic Systems Section 1: Introduction,” IEEE International Symposium on Electromagnetic Compatibility, Detroit, Michigan, USA, pp. 1-10, (2008).
    [7] 林明星、許崇宜、林漢年、邱政男、陳居毓、吳俊德、何子儀、謝翰璋、王曉謙,電磁相容理論與實務,第1-1~1-4頁,台北,全華圖書股份有限公司,民國九十六年。
    [8] Federal Communications Commission, Equipment Regulated under Parts 15 and 18 of the Commission’s Rules, (2002).
    [9] T. Williams, EMC for Product Designers, Oxford : Newnes, Massachusetts, pp.47-80, (2001)
    [10] Federal Communications Commission, Part 15-Radio Frequency Devices, Section 15.107 Conducted Limits, pp.707, (2004).
    [11] Federal Communications Commission, Part 15-Radio Frequency Devices, Section 15.107 Radiated Emission Limits, pp.709, (2004).
    [12] Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment, CISPR Publication 22,(1985).
    [13] Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, AREA EMCS Standard MIL-STD-461E, (1999).
    [14] The Role and Contribution of IEC Standards, IEC Standard EMC-2001, (2001).
    [15] Agilent, “Making Precompliance Conducted and Radiated Emissions Measurements with EMC Analyzer,” AN. 1328, pp. 29
    [16] Agilent, “Spectrum analyzer Basic,” AN. 150, pp.117
    [17] T. Guo, D. Y. Chen and F. C. Lee, “Separation of the Common-Mode and Differential-Mode Conducted EMI Noise,” IEEE Transactions on Power Electronics, Vol. 11, No. 3, pp. 480-488, (1996).
    [18] F. Y. Shih, D. Y. Chen, Y. P. Wu and Y. T. Chen, “A Procedure for Designing EMI Filters for AC Line Applications,” IEEE Transactions on Power Electronics, Vol. 11, No. 1, pp. 170-181, (1996).
    [19] LISN Model LN2-20B, Operational Manual, EMCIS Co., Ltd.
    [20] C. R. Paul, “Diagnosis and Reduction of Conducted Noise Emissions,” IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 4, pp. 553-560, (1988).
    [21] W. Shuo, F.C. Lee and W.G. Odendaal, “Characterization, Evaluation, and Design of Noise Separator for Conducted EMI Noise Diagnosis,” IEEE Transactions on Power Electronics, Vol. 20, pp. 974-982, (2005).
    [22] T. Guo, D. Y. Chen and F. C. Lee, “Diagnosis of Power Supply Conducted EMI Using a Noise Separator,” Proc, IEEE APEC’95, Vol. 1, Dallas, TX, USA, pp. 259-266, (1995).
    [23] 林慶仁、宋自恆,傳導性EMI量測系統的架構及原理,第186期,新電子科技雜誌,民國九十年。
    [24] 王志強譯,開關電源設計(第二版),第371~378頁,北京,電子工業出版社,民國九十四年。
    [25] R. A. Rivera–Ramos and M. Jimenez, “Analytical Models for Estimating Parasitic Components in Power Electronicx PCBs,” 48th Midwest Symposium on Circuits and Systems, Vol. 2, Cincinnati, Ohio, USA, pp. 1235-1238, (2005).
    [26] D. Y. Lee, J. H. Lee, S. H. Min and B. H. Cho, “Exact Simulation of Conducted EMI in Switched Mode Power Supplies,” Proc. IECEC, Vancouver, Canada, No.01-2598, (1999).
    [27] Technical Articles, “Working with Model Libraries,” Intusoft Inc., Product & Applications Handbook, pp. 1-184, (2001).
    [28] D. H. Liu and J. G. Jiang, “High Frequency Characteristic Analysis of EMI Filter in Switch Mode Power Supply (SMPS),” Proc. IEEE PESC’02, Vol. 4, Cairns, Qld, Australia, pp. 2039-2043, (2002).
    [29] O. H. Martin, “Modeling Non-Ideal Inductors in SPICE,” Newport Components, U.K. (1993).
    [30] C. R. Paul, Introduction to Electromagnetic Compatibility, John Wiley and Sons, New York, pp. 22-329, (1992).
    [31] Y. L. Zhong and Z. M. Zhao, “Comparison of Parasitic Parameters Extraction methods and Equivalent Circuits for a Grounding Model,” ICEMS’08, Wuhan, China, pp. 3781-3784, (2008).
    [32] L. Rossetto, S. Buso and G. Spiazzi, “Conducted EMI Issues in a 600-W Single-Phase Boost PFC Design,” IEEE Transactions on Industry Applications, Vol. 36, pp. 578-585, (2000).
    [33] D. Cochrane, D. Y. Chen and D. Boroyevic, “Passive Cancellation of Common-Mode Noise in Power Electronic Circuits,” IEEE Transactions on Power Electronics, Vol. 18, No. 3, pp. 756-763, (2003).
    [34] 林志一、曾龍圖,IsSpice Version 8 交談式電路模擬分析與應用,第B7-18 ~ B7-20頁,台北,全華科技圖書股份有限公司,民國八十七年。
    [35] S. Wang, F. C. Lee and W. G. Odendaal, “Improving the Performance of Boost PFC EMI Filters,” Proc. IEEE APEC’03, Vol. 1, Miami, Florida, USA, pp. 368-374, (2003).
    [36] K. Pengju, W. Shuo and F.C. Lee, “Improving Balance Technique for High Frequency Common Mode Noise Reduction in Boost PFC Converters,” PSES’08, Austin, TX, USA, pp. 2941-2947, (2008).

    QR CODE