簡易檢索 / 詳目顯示

研究生: 陳明正
Ming-Cheng Chen
論文名稱: 圖騰柱無橋式功率因數修正器之電流諧波與電磁干擾抑制策略
Suppression Strategies of Current Harmonics and Electromagnetic Interference for Totem-Pole Bridgeless PFC Converter
指導教授: 邱煌仁
Huang-Jen Chiu
劉宇晨
Yu-Chen Liu
口試委員: 劉益華
Yi-Hua Liu
林長華
Chang-Hua Lin
呂錦山
Ching-Shan Leu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 143
中文關鍵詞: 圖騰柱無橋式交流直流功率因數修正器數位控制諧波抑制共模電流零交越軟啟動
外文關鍵詞: Totem-Pole bridgeless ACDC PFC converter, Common mode current, Zero crossing soft-start
相關次數: 點閱:312下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將對圖騰柱無橋式交直流功率因數修正器的動作原理、功率元件設計、回授電路設計、控制迴路分析、數位控制迴路分析、數位補償器設計以及諧波抑制方法作詳細探討,並以數學理論為基礎,與模擬和實測結果作驗證。另一方面,由於此架構沒有輸入整流二極體,使得共模電磁干擾比傳統功率因數修正器大;同時為了提高效率,在慢速臂開關的選擇上,會以低導通電阻做為主要考量,而此元件又以超級接面的結構為主,因輸出電容非線性的影響,在輸入電壓零交越後,產生電感電流突波和共模電流突波的問題,透過數學理論,從該架構電磁干擾模型推導出突波電流的關係式,並和套用零交越軟啟動的解決方案做比較,分析對總諧波失真和電磁干擾的影響,最後提出設計準則,以供不同的慢速臂開關使用。在最後的共模電磁干擾測量結果中,使用零交越軟啟動後,在頻率點1.7 MHz、2.6 MHz、5.4 MHz、14 MHz處,峰值下降幅度超過15 dB,因此證明零交越軟啟動能夠有效抑制共模電流突波。


    This dissertation will based on mathematical to analysis Totem-Pole bridgeless ACDC PFC converter in detail. Which include operation principle, power component design, feedback circuit design, control loop analysis, digital control loop analysis, digital compensator design and harmonic suppression strategies. Then verify with simulation and experimental results. On the other hands, due to lack of rectifier. The common mode EMI is higher than conventional Boost PFC converter. In order to improve efficiency. The small RDS(on) MOSFET usually use as slow leg’s switch. The most of these are Super Junction structure. Because of its non-linear Coss characteristic. The common mode current spike will occur at every AC zero-crossing point. By derived this current spike’s equation from EMI model in mathematical theory. And then compare with adopt zero-crossing soft-start solution. Find the relationship in input current THD and EMI result. Then proposed a design procedure. In the CM-EMI experimental result, after use ZCSS. The frequency at 1.7 MHz, 2.6 MHz, 5.4 MHz, 14 MHz. These noise level are reduced over 15 dB. Therefore, the ZCSS can suppress CM-EMI significantly.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖目錄 viii 表目錄 xv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文大綱 6 第二章 圖騰柱無橋式功率因數修正器 8 2.1 電路架構及動作原理 8 2.2 元件設計 13 2.2.1 功率元件設計 14 2.2.2 回授元件設計 21 2.3 控制迴路分析 25 2.3.1 TPB-PFC控制方法 25 2.3.2 電流迴路分析 28 2.3.3 電壓迴路分析 33 2.3.4 控制迴路數位化所造成的影響 37 2.3.5 數位補償器設計 45 2.3.6 輸入電流諧波抑制策略 51 2.4 TPB-PFC控制上的問題 60 2.4.1 輸入電壓極性判斷問題 60 2.4.2 同步整流控制問題 62 第三章 零交越控制策略 64 3.1 零交越電感電流突波問題 64 3.2 零交越CM-EMI模型 66 3.3 零交越軟啟動 74 3.3.1 動作原理與 非線性特性所造成的影響 76 3.3.2 與輸入電流THD和CM-EMI的關係 82 3.3.3 Duty設計流程 87 第四章 模擬與實測結果 90 4.1 模擬結果 90 4.2 實測結果 102 第五章 結論與未來展望 119 5.1 結論 119 5.2 未來展望 120 參考文獻 122

    [1]
    DataCenter Knowledge Informa USA Inc, Here’s How Much Energy All US Data Centers Consume- Second study of its kind in history shows overall growth in data center energy use has flattened [Online]. Available:
    http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume
    [2]
    ENERGY STAR certified server [Online]. Available:
    https://www.energystar.gov/products/office_equipment/enterprise_servers/key_product_criteria
    [3]
    80 PLUS Test Protocol, Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc and Dc-Dc Power Supplies [Online]. Available:
    https://plugloadsolutions.com/docs/collatrl/print/Generalized_Internal_Power_Supply_Efficiency_Test_Protocol_R6.7.pdf
    [4]
    Wikipedia IEC 61000-3-2 [Online]. Available:
    https://en.wikipedia.org/wiki/IEC_61000-3-2
    [5]
    Woo-Young Choi, Jung-Min Kwon, Eung-Ho Kim, Jong-Jae Lee, and Bong-Hwan Kwon, “Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Reverse-Recovery Problems”, IEEE Transactions on Industrial Electronics, vol. 54, no.2, pp. 769-780, Apr. 2007.
    [6]
    Mihaela-Codruta Ancuti, Marcus Svoboda, Sorin Musuroi, Alexandru Hedes, Nicola-Valeriu Olarescu, and Martin Wienmann, “Boost interleaved PFC versus bridgeless boost interleaved PFC converter performance/efficiency analysis”, in Proc. International Conference on Applied and Theoretical Electricity (ICATE), 2014, pp. 1-6.
    [7]
    Laszlo Huber, Yungtaek Jang, and Milan M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers”, IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May. 2008.
    [8]
    Liang Zhou, Yifeng Wu, Jim Honea, and Zhan Wang, “High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution”, in Proc. PCIM Europe International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2015, pp. 1482-1489.
    [9]
    Zhengyang Liu, Xiucheng Huang, Mingkai Mu, Yuchen Yang, Fred C. Lee, and Qiang Li, “Design and evaluation of GaN-based dual-phase interleaved MHz critical mode PFC converter”, in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 611-616.
    [10]
    Jae-Hyun Kim, Gun-Woo Moon, and Jae-Kuk Kim, “Zero-voltage-switching totem-pole bridgeless boost rectifier with reduced reverse-recovery problem for power factor correction”, in Proc. International Power Electronics and Motion Control Conference, 2012, pp.1044-1048.
    [11]
    Khairul Safuan Muhammad and Dylan Dah-Chuan Lu, “Two-switch ZCS totem-pole bridgeless PFC boost rectifier”, in Proc. IEEE International Conference on Power and Energy (PECon), 2012, pp. 1-6.
    [12]
    Qingyun Huang and Alex Q. Huang, “Review of GaN totem-pole bridgeless PFC”, CPSS Transactions on Power Electronics and Applications, vol. 2 , no. 3, pp. 187-196, Sep. 2017.
    [13]
    R.B. Ridley, “Average small-signal analysis of the boost power factor correction circuit”, in Proc. VPEC Seminar Proceedings, 1989, pp. 108-120.
    [14]
    Chen Zhou and Milan M. Jovanović, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits”, in Proc. High Frequency Power Conversion Conference (HFPC), 1992, pp. 51-61.
    [15]
    Texas Instruments Inc, “Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply”, Application Report SPRAAB3, Jul. 2005.
    [16]
    Koen De Gussemé, D.M. Van de Sype, and J.A.A. Melkebeek, “Design issues for digital control of boost power factor correction converters”, in Proc. IEEE International Symposium, 2002, pp. 731-736.
    [17]
    Luca Corradini, Dragan Maksimovic, Paolo Mattavelli, and Regan Zane, Digital Control of High-Frequency Switched-Mode Power Converters. USA, NJ: Wiley, 2015, pp. 51-78.
    [18]
    D.M. Van de Sype, K. De Gusseme, A.P. Van den Bossche, and J.A. Melkebeek, “Small-signal Laplace-domain analysis of uniformly-sampled pulse-width modulators”, in Proc. IEEE 35th Annual Power Electronics Specialists Conference, 2004, pp. 4292-4298.
    [19]
    Koen De Gusseme, D.M. Van de Sype, A.P.M. Van den Bossche, and J.A. Melkebeek, “Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode”, IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 88-97, Feb. 2005.
    [20]
    D.M. Van de Sype, Koen De Gusseme, A.P.M. Van den Bossche, and J.A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters”, IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 108-115, Feb. 2005.
    [21]
    Colin W. Clark, Fariborz Musavi, and Wilson Eberle, “Digital DCM Detection and Mixed Conduction Mode Control for Boost PFC Converters”, IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 347-355, Jan. 2014.
    [22]
    K. De Gusseme, D.M.V. de Sype, A.P. Van den Bossche, and J.A. Melkebeek, “Sample correction for digitally controlled boost PFC converters operating in both CCM and DCM”, in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2003, pp. 389-395.
    [23]
    D.M. Van de Sype, K. De Gusseme, A.P. Van den Bossche, and J.A.A. Melkebeek, “A sampling algorithm for digitally controlled boost PFC converters”, IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 649-657, May. 2004.
    [24]
    A. El Aroudi, R. Haroun, A. Cid-Pastor, and L. Martinez-Salamero, “Suppression of Line Frequency Instabilities in PFC AC-DC Power Supplies by Feedback Notch Filtering the Pre-Regulator Output Voltage”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 3, pp. 796-809, Mar. 2013.
    [25]
    A. El Aroudi, R. Haroun, A. Cid-Pastor, M. Orabi, and Luis Martínez-Salamero, “Notch filtering-based stabilization of PFC AC-DC pre-regulators”, in Proc. International Power Electronics and Motion Control Conference (PEMC), 2010, pp. T13-22-T13-27.
    [26]
    E. Firmansyah, S. Tomioka, A. Seiya, M. Shoyama, and T. Ninomiya, “Totem-Pole Power-Factor-Correction Converter under Critical-Conduction-Mode Interleaved Operation”, IEICE Transactions on Communications (IEICE Trans Comm), vol. 93-B, no. 9, pp. 2250-2256, Sep. 2010.
    [27]
    Bin Su, Junming Zhang, and Zhengyu Lu, Senior Member, IEEE, “Totem-Pole Boost Bridgeless PFC Rectifier With Simple Zero-Current Detection and Full-Range ZVS Operating at the Boundary of DCM/CCM”, IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 427-435, Feb. 2011.
    [28]
    Texas Instruments Inc, “How to reduce current spikes at AC zero-crossing for totem-pole PFC”, Application notes, Oct. 2015
    [29]
    Lingxiao Xue, Zhiyu Shen, Dushan Boroyevich, and Paolo Mattavelli, “GaN-based high frequency totem-pole bridgeless PFC design with digital implementation”, in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 759-766.
    [30]
    Qingnan Li, Michael A. E. Andersen, and Ole C. Thomsen, “Conduction losses and common mode EMI analysis on bridgeless power factor correction”, in Proc. IEEE International Conference on Power Electronics and Drive Systems, 2010, pp.1255-1260.
    [31]
    Jean-Christophe Crebier and Jean-Paul Ferrieux, “PFC full bridge rectifiers EMI modeling and analysis-common mode disturbance reduction”, IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 378-387, Mar. 2004.
    [32]
    Baihua Zhang, Kewei Shi, Qiang Lin, Gamal M. Dousoky, Masahito Shoyama, and Satoshi Tomioka, “Conducted noise reduction of totem-pole bridgeless PFC converter using GaN HEMTs”, in Proc. IEEE International Telecommunications Energy Conference (INTELEC), 2015, pp. 1-5.
    [33]
    Kewei Shi, Masahito Shoyama, and Satoshi Tomioka, “Common mode noise reduction in totem-pole bridgeless PFC converter”, in Proc. IEEE International Power Electronics and Application Conference and Exposition, 2014, pp. 705-709.
    [34]
    Carl Ngai Man Ho, River Tin-ho Li, and Ken King-Man Siu, “Active Virtual Ground—Bridgeless PFC Topology”, IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6206-6218 Aug. 2017.
    [35]
    Baihua Zhang, Qiang Lin, Jun Imaoka, Masahito Shoyama, Satoshi Tomioka, and Eiji Takegami, “Conducted noise prediction for zero-crossing issue in totem-pole bridgeless PFC converter”, in Proc. IEEE International Telecommunications Energy Conference (INTELEC), 2017, pp. 396-401.
    [36]
    Chang Sung Corporation, MAGNETIC POWDER CORES [Online]. Available:
    http://www.changsung.com/_eng/product/goods.php?goods_no=12&ckattempt=1
    [37]
    Texas Instruments Inc, TMS320F28035 Datasheet [Online]. Available: http://www.ti.com/product/TMS320F28035
    [38]
    LEM, LV 25-P Datasheet [Online]. Available:
    https://www.lem.com/sites/default/files/products.../lv_25-p.pdf
    [39]
    STMicroelectronics, STY145N65M5 Datasheet [Online]. Available: https://www.st.com/resource/en/datasheet/sty145n65m5.pdf

    無法下載圖示 全文公開日期 2023/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE