簡易檢索 / 詳目顯示

研究生: 黎佳霖
Chia-Lin Li
論文名稱: 以微米尺寸懸臂樑法評估金屬玻璃薄膜之缺口韌性研究:結晶與非晶薄膜之韌性探討
Notch toughness evaluations of thin film metallic glasses using FIB-based microcantilever method: A comparison study with crystalline thin films
指導教授: 朱瑾
Jinn P. Chu
口試委員: 朱瑾
郭俊良
鍾俊輝
薛承輝
鄭憲清
李志偉
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 缺口破裂韌性金屬玻璃薄膜微懸臂樑非晶薄膜結晶薄膜
外文關鍵詞: microcantilever
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今薄膜機械性質分析,多著重於硬度、彈性系數和附著性質等,而薄膜在製作或是使用過程中若產生破裂,會嚴重影響薄膜性能,因此破裂韌性(fracture toughness)亦為薄膜相當重要的機械性質之一,能進一步瞭解並且分析破裂韌性可避免薄膜結構上的損害。近年來,有鑑於金屬玻璃薄膜(thin film metallic glass, TFMG)擁有許多獨特性質,高強度、耐腐蝕和光滑之表面,而引起各界重視,並被嘗試應用於各領域,然而將金屬玻璃薄膜應用於產品上的研發,除基本機性質了解外,若能進一步瞭解金屬玻璃薄膜的破裂韌性,勢必能更加完整的發揮其優越性並作為相關應用的薄膜選用依據。本研究使用射頻磁控濺鍍儀製備鋯基和鎢基金屬玻璃薄膜於矽基板,再以雙束型聚焦離子束將基材上之金屬玻璃薄膜製作成微米尺度懸臂樑,接著利用奈米壓痕儀對金屬玻璃懸臂予以樑壓,進行缺口破裂韌性(Notch Toughness, KQ)實驗分析計算,同時與傳統結晶之氮化鈦(TiN)薄膜、鈦(Ti)金屬薄膜以及具有與鋯基金屬玻璃薄膜相似成份組之鋯基金屬塊材成進行比較,以探討各材料破裂韌性之相互關係。經懸臂樑缺口破裂韌性測量結果發現,氮化鈦的KQ值為0.74 MPa*m0.5,實驗結果與壓痕破裂韌性實驗所計算出的值相當接近,故懸臂樑破裂韌性實驗應具有其一定的準確性。而經懸臂樑破裂韌性實驗計算出鋯基金屬塊材、鋯基和鎢基金屬玻璃薄膜之KQ值分別為4.4 MPa*m0.5、3.84 MPa*m0.5和5.13 MPa*m0.5,高於Ti (2.15 MPa*m0.5)及氮化鈦薄膜,符合文獻中指金屬玻璃薄膜具優良機械性質的特性,顯示本研究所用使用之試驗法的可行與應用性。此外,金屬玻璃薄膜在使用壓痕破裂韌性法上不見其產生裂痕,故無法藉此法計算金屬玻璃薄膜之破裂韌性值,因此凸顯出本研究之懸臂樑試驗法對量測金屬玻璃薄膜之破裂韌性值的重要性。


Analysis of mechanical properties on thin films usually focus on the hardness, elastic modulus and adhesion behavior. One of the key mechanical properties on thin film is the fracture toughness, which directly affect the application. Therefore, understanding and evaluation the fracture toughness of thin film is an important issue. Metallic glass thin films (TFMGs) have many unique properties, high strength, corrosion and smooth surface. They attract many attentions in the industry and has been researched and developed for various application. Nevertheless, studies on fracture toughness of TFMGs were still insufficient in recent year. Therefore, this study measured the fracture toughness of amorphous Zr51Cu31Al13Ni5 and W33Ni32B35 TFMGs in comparison with crystalline Ti and TiN thin films as well as bulk metallic glass (BMG) using microcantilever deflection and conventional indentation methods. Deflection testing was conducted using microcantilevers fabricated by focused ion beam machining. Higher notch toughness values of 4.4, 3.84 and 5.13 MPa*m0.5 for BMG, Zr- and W-based TFMGs, respectively, than TiN (0.74 MPa*m0.5) and Ti (2.15 MPa*m0.5) films were obtained. The notch toughness of amorphous materials far exceeded those of crystalline materials. Zr-TFMG and BMG microcantilevers presented ductile fracture behavior similar to that of Ti. The results of fracture energy and vein pattern size would appear to be better than notch toughness values for the evaluation of fracture behavior. Zr-TFMG was shown to require more energy for the creation of fractures than were the other materials. Therefore, at micro-scales, metallic glasses present relatively better fracture behavior than do crystalline materials. This study presents a direct comparison of works related to the notch toughness of amorphous and crystalline materials.

Chatpter 1 Introduction 1 Chatpter 2 Literature Review 4 2.1 Introduction to Background and Methods of Fracture Toughness 4 2.1.1 Background of Fracture Toughness 4 2.1.2 Fracture Toughness Testing and Standardization 7 2.2 Fracture Toughness Measurement Methodologies on Thin Films 11 2.2.1 Indentation 11 2.2.2 Freestanding cantilever 14 2.2.3 Different Ways for Measuring the Fracture Toughness 18 2.3 Thin Film and Bulk Metallic Glasses 21 2.3.1 The Fracture of Bulk Metallic Glasses (BMGs) 25 2.3.1.1 Fracture Toughness Measurement and Value 26 2.3.1.2 Fracture morphology and Mechanics 29 2.3.2 The Fracture of Thin Film Metallic Glasses (TFMGs) 33 Chatpter 3 Experimental procedure 36 3.1 Thin films and BMG preparation 36 3.2 Material Characterization 39 3.2.1 Chemical Composition Analysis 39 3.2.2 Crystallographic Analysis 39 3.2.3 Thermal Analysis 39 3.2.4 Mechanical property analysis 40 3.3 Microcantilever Preparation 42 3.3.1 Geometric Design of Microcantilever 43 3.3.2 Procedure of Microcantilever FIB Milling 44 3.4 Fracture Toughness Evaluation 49 3.4.1 Microcantilever Bending Method 49 3.4.2 Indentation Method 50 3.4.3 Fractography Analysis 50 3.4.4 Fracture Energy and Plastic Zone Size 50 Chatpter 4 Results and Discussion 52 4.1 Material Characterization 52 4.1.1 Chemical Composition Analysis 52 4.1.2 Crystallographic Analysis 53 4.1.3 Thermal Analysis 54 4.1.4 Mechanical properties 54 4.2 Fracture Toughness Measurement by Indentation Method 55 4.3 Notch Toughness Measurement by Microcantilever Bending Method 58 4.3.1 Microcantilever Observation Before-and-After Bending Test 58 4.3.2 Load-Deflection Curves 63 4.3.3 Morphology of Ruptured Surfaces 69 4.3.4 Notch Toughness Calculation 75 4.4 Discussions on Fracture Behaviors 78 4.4.1 Plastic zone size, p 78 4.4.2 Fracture energy, G 84 4.4.3 Vein pattern sizes of amorphous materials 86 4.4.4 Fracture mechanism 89 Chatpter 5 Conclusions 92 References.. 94

[1] J.P. Chu, J. Huang, J.S. Jang, Y. Wang, P. Liaw, Thin film metallic glasses: preparations, properties, and applications, Jom 62(4) (2010) 19-24.
[2] J.P. Chu, J. Jang, J. Huang, H. Chou, Y. Yang, J. Ye, Y. Wang, J. Lee, F. Liu, P. Liaw, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122.
[3] W. Diyatmika, J.P. Chu, B.T. Kacha, C.-C. Yu, C.-M. Lee, Thin film metallic glasses in optoelectronic, magnetic, and electronic applications: A recent update, Current Opinion in Solid State and Materials Science 19(2) (2015) 95-106.
[4] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S.C. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films 561 (2014) 102-107.
[5] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surface and Coatings Technology 239 (2014) 20-27.
[6] C. Chiang, J. Chu, F. Liu, P. Liaw, R. Buchanan, A 200 nm thick glass-forming metallic film for fatigue-property enhancements, Applied physics letters 88(13) (2006) 131902.
[7] C. Lee, J. Chu, W. Chang, J. Lee, J. Jang, P. Liaw, Fatigue property improvements of Ti–6Al–4V by thin film coatings of metallic glass and TiN: a comparison study, Thin Solid Films 561 (2014) 33-37.
[8] J.P. Chu, J. Greene, J.S. Jang, J. Huang, Y.-L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Materialia 60(6) (2012) 3226-3238.
[9] C.-C. Yu, C. Lee, J.P. Chu, J. Greene, P.K. Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature, APL Materials 4(11) (2016) 116101.
[10] P.A. Tuan, H. Oguchi, M. Hara, M. Shikida, H. Hida, T. Ando, K. Sato, H. Kuwano, A new metallic glass Fe-B-Nd-Nb thin film material for micro sensors and actuators: Fabrication and characterization, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, 2013, pp. 1040-1043.
[11] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surface and Coatings Technology 198(1) (2005) 74-84.
[12] S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films 520(7) (2012) 2375-2389.
[13] T. Weihs, S. Hong, J. Bravman, W. Nix, Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films, Journal of Materials Research 3(5) (1988) 931-942.
[14] G. Zhang, Y. Liu, B. Zhang, Effect of annealing close to T g on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications, Scripta materialia 54(5) (2006) 897-901.
[15] X.-K. Zhu, J.A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Engineering Fracture Mechanics 85 (2012) 1-46.
[16] G. Kirsch, Die theorie der elastizität und die bedürfnisse der festigkeitslehre, Springer1898.
[17] C.E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Spie Milestone series MS 137 (1997) 3-17.
[18] H.E. Medina, R. Pidaparti, B. Hinderliter, Celebrating the 100th Anniversary of Inglis Result: From a Single Notch to Random Surface Stress Concentration Solutions, Applied Mechanics Reviews 67(1) (2014) 010802-010802-9.
[19] B.A. Sun, W.H. Wang, The fracture of bulk metallic glasses, Progress in Materials Science 74 (2015) 211-307.
[20] G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of applied mechanics 24(3) (1957) 361-364.
[21] A. Standard, E399-90, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials1, Annual Book of ASTM Standards 3 (2002).
[22] A. Standard, Standard test method for measurement of fracture toughness, ASTM, E1820-01 (2001) 1-46.
[23] C.H. Wang, Introduction to fracture mechanics, DSTO Aeronautical and Maritime Research Laboratory Melbourne, Australia1996.
[24] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Materials Science and Engineering: A 253(1) (1998) 151-159.
[25] B.R. Lawn, A. Evans, D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, Journal of the American Ceramic Society 63(9‐10) (1980) 574-581.
[26] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, Journal of the American Ceramic Society 64(9) (1981) 533-538.
[27] M. Nastasi, D.M. Parkin, H. Gleiter, Mechanical properties and deformation behavior of materials having ultra-fine microstructures, Springer Science & Business Media2012.
[28] Z. Xia, W. Curtin, B. Sheldon, A new method to evaluate the fracture toughness of thin films, Acta materialia 52(12) (2004) 3507-3517.
[29] K. Matoy, H. Schönherr, T. Detzel, G. Dehm, Micron-sized fracture experiments on amorphous SiOx films and SiOx/SiNx multi-layers, Thin Solid Films 518(20) (2010) 5796-5801.
[30] F. Iqbal, J. Ast, M. Göken, K. Durst, In situ micro-cantilever tests to study fracture properties of NiAl single crystals, Acta Materialia 60(3) (2012) 1193-1200.
[31] W. Cao, A. Kundu, Z. Yu, M.P. Harmer, R.P. Vinci, Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel, Scripta Materialia 69(1) (2013) 81-84.
[32] S.-F. Hwang, J.-H. Yu, B.-J. Lai, H.-K. Liu, Young’s modulus and interlaminar fracture toughness of SU-8 film on silicon wafer, Mechanics of Materials 40(8) (2008) 658-664.
[33] K. Takashima, Y. Higo, S. Sugiura, M. Shimojo, Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film, Materials Transactions 42(1) (2001) 68-73.
[34] S. Massl, W. Thomma, J. Keckes, R. Pippan, Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique, Acta Materialia 57(6) (2009) 1768-1776.
[35] C. Chen, S. Nagao, K. Suganuma, J. Jiu, T. Sugahara, H. Zhang, T. Iwashige, K. Sugiura, K. Tsuruta, Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices, Acta Materialia 129 (2017) 41-51.
[36] K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Pippan, C. Motz, G. Dehm, A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films, Thin Solid Films 518(1) (2009) 247-256.
[37] J. McCarthy, Z. Pei, M. Becker, D. Atteridge, FIB micromachined submicron thickness cantilevers for the study of thin film properties, Thin solid films 358(1) (2000) 146-151.
[38] K. Matoy, T. Detzel, M. Müller, C. Motz, G. Dehm, Interface fracture properties of thin films studied by using the micro-cantilever deflection technique, Surface and Coatings Technology 204(6) (2009) 878-881.
[39] C.S. John, The brittle-to-ductile transition in pre-cleaved silicon single crystals, Philosophical Magazine 32(6) (1975) 1193-1212.
[40] K.E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE 70(5) (1982) 420-457.
[41] D. Di Maio, S. Roberts, Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams, Journal of materials research 20(2) (2005) 299-302.
[42] G. Žagar, V. Pejchal, M.G. Mueller, L. Michelet, A. Mortensen, Fracture toughness measurement in fused quartz using triangular chevron-notched micro-cantilevers, Scripta Materialia 112 (2016) 132-135.
[43] F.Y. Cui, R.P. Vinci, A chevron-notched bowtie micro-beam bend test for fracture toughness measurement of brittle materials, Scripta Materialia 132 (2017) 53-57.
[44] S. Liu, J. Wheeler, P. Howie, X. Zeng, J. Michler, W. Clegg, Measuring the fracture resistance of hard coatings, Applied Physics Letters 102(17) (2013) 171907.
[45] W. Klement, R. Willens, P. Duwez, Non-crystalline structure in solidified gold–silicon alloys, Nature 187(4740) (1960) 869-870.
[46] H. Chen, The influence of structural relaxation on the density and Young’s modulus of metallic glasses, Journal of Applied Physics 49(6) (1978) 3289-3291.
[47] H. Kui, A.L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing, Applied Physics Letters 45(6) (1984) 615-616.
[48] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Materialia 59(6) (2011) 2243-2267.
[49] M. Telford, The case for bulk metallic glass, Materials Today 7(3) (2004) 36-43.
[50] M. Ashby, A. Greer, Metallic glasses as structural materials, Scripta Materialia 54(3) (2006) 321-326.
[51] H.H. Liebermann, Rapidly solidified alloys: processes, structures, properties, applications, Marcel Dekker, Inc, 270 Madison Ave, New York, New York 10016, USA, 1993. 788 (1993).
[52] M. Ishida, H. Takeda, N. Nishiyama, K. Kita, Y. Shimizu, Y. Saotome, A. Inoue, Wear resistivity of super-precision microgear made of Ni-based metallic glass, Materials Science and Engineering: A 449 (2007) 149-154.
[53] G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better, Advanced materials 23(4) (2011) 461-476.
[54] E. Parker, B. Thibeault, M. Aimi, M. Rao, N. MacDonald, Inductively coupled plasma etching of bulk titanium for MEMS applications, Journal of the Electrochemical Society 152(10) (2005) C675-C683.
[55] M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman, High-aspect-ratio bulk micromachining of titanium, Nature materials 3(2) (2004) 103-105.
[56] S. Hata, K. Sato, A. Shimokohbe, Fabrication of thin film metallic glass and its application to microactuators, Asia Pacific Symposium on Microelectronics and MEMS, International Society for Optics and Photonics, 1999, pp. 97-108.
[57] S. Wang, D. Sun, S. Hata, J. Sakurai, A. Shimokohbe, Fabrication of thin film metallic glass (TFMG) pipe for a cylindrical ultrasonic linear micro-actuator, Sensors and Actuators A: Physical 153(1) (2009) 120-126.
[58] P.H. Tsai, T.H. Li, K.T. Hsu, J.W. Chiou, J.S.C. Jang, J.P. Chu, Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades, Thin Solid Films 618 (2016) 36-41.
[59] J.J. Kruzic, Bulk metallic glasses as structural materials: A review, Advanced Engineering Materials 18(8) (2016) 1308-1331.
[60] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nature materials 10(2) (2011) 123-128.
[61] J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters 93(25) (2004) 255506.
[62] P. Lowhaphandu, J.J. Lewandowski, Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be, Scripta Materialia 38(12) (1998) 1811-1817.
[63] R.D. Conner, A.J. Rosakis, W.L. Johnson, D.M. Owen, Fracture toughness determination for a beryllium-bearing bulk metallic glass, Scripta Materialia 37(9) (1997) 1373-1378.
[64] U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay, Hardness and plastic deformation in a bulk metallic glass, Acta Materialia 53(3) (2005) 705-717.
[65] C.H. Rycroft, E. Bouchbinder, Fracture toughness of metallic glasses: annealing-induced embrittlement, Physical review letters 109(19) (2012) 194301.
[66] V. Keryvin, V. Hoang, J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation, Intermetallics 17(4) (2009) 211-217.
[67] X. Xi, D. Zhao, M. Pan, W. Wang, Y. Wu, J. Lewandowski, Fracture of brittle metallic glasses: Brittleness or plasticity, Physical review letters 94(12) (2005) 125510.
[68] M. Gao, B.A. Sun, C.C. Yuan, J. Ma, W.H. Wang, Hidden order in the fracture surface morphology of metallic glasses, Acta Materialia 60(20) (2012) 6952-6960.
[69] Q. He, J.K. Shang, E. Ma, J. Xu, Crack-resistance curve of a Zr–Ti–Cu–Al bulk metallic glass with extraordinary fracture toughness, Acta Materialia 60(12) (2012) 4940-4949.
[70] M. Ghidelli, A. Volland, J.-J. Blandin, T. Pardoen, J.-P. Raskin, F. Mompiou, P. Djemia, S. Gravier, Exploring the mechanical size effects in Zr 65 Ni 35 thin film metallic glasses, Journal of Alloys and Compounds 615 (2014) S90-S92.
[71] L. Zhang, H. Yang, X. Pang, K. Gao, A.A. Volinsky, Microstructure, residual stress, and fracture of sputtered TiN films, Surface and Coatings Technology 224 (2013) 120-125.
[72] M. Trueba, D. Gonzalez, M. Elizalde, J. Martínez-Esnaola, M. Hernandez, H. Li, D. Pantuso, I. Ocaña, Assessment of mechanical properties of metallic thin-films through micro-beam testing, Thin Solid Films 571 (2014) 296-301.
[73] A. Riedl, R. Daniel, M. Stefenelli, T. Schöberl, O. Kolednik, C. Mitterer, J. Keckes, A novel approach for determining fracture toughness of hard coatings on the micrometer scale, Scripta Materialia 67(7) (2012) 708-711.
[74] C.-C. Wang, Y.-W. Mao, Z.-W. Shan, M. Dao, J. Li, J. Sun, E. Ma, S. Suresh, Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass, Proceedings of the National Academy of Sciences 110(49) (2013) 19725-19730.
[75] R. Narayan, P. Tandaiya, R. Narasimhan, U. Ramamurty, Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass, Acta Materialia 80 (2014) 407-420.
[76] J. Lewandowski*, W. Wang, A. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters 85(2) (2005) 77-87.
[77] M. Ghidelli, S. Gravier, J.-J. Blandin, J.-P. Raskin, F. Lani, T. Pardoen, Size-dependent failure mechanisms in ZrNi thin metallic glass films, Scripta Materialia 89 (2014) 9-12.

無法下載圖示 全文公開日期 2022/10/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE