簡易檢索 / 詳目顯示

研究生: 黃瑞智
黃瑞智 : Huang-Rih-Chih
論文名稱: 不同表面鍍膜的三體刮磨行為研究
The Study of Wear Performance of Different Coatings in Three-Body Abrasive Wear
指導教授: 曾垂拱
Chwei-Goong Tseng
口試委員: 雷添壽
Tien-Shou Lei
李維禎
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 82
中文關鍵詞: 氮化鈦氮化鋯
外文關鍵詞: TiN, Cr, ZrN
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之目的在於利用自行研發的刮磨磨耗機台,探討固態原料滑動的速度、壓力與溫度對試片表面之磨耗行為的影響。固態原料使用硬度Hv 1250之矽砂顆粒,試片包含S50C、硬化過之S50C、硬化過之高速鋼SKH51與利用真空離子濺鍍系統披覆在SKH51基材之氮化鋯鍍層、氮化鈦鍍層及硬鉻鍍層。藉由量測試片的重量損失評估不同試片之耐磨耗能力。並使用往復式磨耗試驗機(Plint-TE77)進行圓球對平板之點接觸滑動模式之磨耗實驗,針對鍍膜試片的磨耗機制、摩擦係數等進行評估,接著利用SEM觀察試片表面的磨耗型態配合EDX進行表面成份分析。
    試驗結果顯示磨耗量增加的主要因素來自負載的增加,而氮化鋯鍍層具有最佳的耐磨耗能力


    The purpose of this paper is to use its own research and development of the mill wear scraping machine to explore the solid material sliding speed, pressure and temperature on the surface of the test wear behavior. The use of solid raw material hardness of Hv 1250 silica particles, contains test S50C, have been hardening of S50C, hardening-off of high-speed steel and SKH51 vacuum ion sputtering system SKH51 drape in the matrix of zirconium nitride coating, titanium nitride coating And hard chrome plating. With the amount of weight loss on-chip test to assess different test of wear ability. And the use of reciprocating wear testing machine (Plint-TE77) for flat-panel ball to the point of contact mode of sliding wear test, the test for coating wear mechanisms, such as the coefficient of friction to assess, and then try to use SEM to observe the surface wear Types with EDX analysis of the surface composition.
    The results showed that the major increase in the amount of wear from the load factor increases, and zirconium nitride coating has the best ability to wear.

    中文摘要……………………………………………………………….Ⅰ 英文摘要………………………………………………………………..Ⅱ 誌謝……………………………………………………………………..Ⅲ 目錄……………………………………………………………………..Ⅳ 表索引…………………………………………………..……..……… IV 圖索引……………………………………………………………..……IX 第一章 緒論……………………………………………………………1 1.1 前言..…………………………………………………………...1 1.2 研究動機……………………………………………………….2 第二章 文獻回顧………………………………………………………3 2.1 薄膜的歷史……………………….………………………...….3 2.2薄膜的應用.………………..………….…………………….….4 2.3薄膜形成技術……….………………..………………….….….5 2.4 真空離子蒸鍍法...……………………….………….…..….….6 2.5磨耗機構…………………………………….……………..…...7 第三章 實驗方法與步驟………………………………………..........12 3.1 實驗方法………………………………………………….12 3.2 濺鍍參數與鍍膜安排..…………………………...……....13 3.3 鍍膜分析……………….……………..……...……….......13 3.3.1 電子顯微鏡……………………………………………..13 3.3.2 能量分散光譜儀………………………………………..13 3.3.3 硬度試驗………………………………………………..14 3.3.4 壓痕實驗………………………………………………..14 3.4 熱處理……………………………..……………......................14 3.5 磨耗試驗儀器…..………………..……………........................15 3.5.1 刮磨磨耗機構…………………………………………..15 3.5.2刮磨磨耗實驗參數設定………………………………...16 3.5.3往復式摩擦試驗機………………………………………17 3.6 磨耗試驗程序……………………………….………………..17 3.6.1 實驗前準備工作…………………….………………….17 3.6.2 磨耗實驗程序…………………….…………………….18 第四章 實驗結果與討論….…..…………………….….…………….20 4.1 刮磨磨耗試驗機………………………………...……….........20 4.1.1 機構製作…….…………………………….....................20 4.2 S50C刮磨磨耗測試………………………………...................20 4.2.1 橡膠輪轉動速度對耐磨耗性能之影響………………..21 4.2.2 溫度對S50C試片的耐磨耗性能之影響……..…….....22 4.2.3 負載對S50C試片的耐磨耗性能之影響……………...23 4.2.4 硬化過之S50C試片的耐磨耗性能…………………...24 4.3 鍍膜磨潤性質測試…………………….………….…………..25 4.3.1 S50C試片硬化前後之磨潤性質分析……………….....25 4.3.2 SKH51試片之磨潤性質分析…………..........................26 4.3.3鉻鍍層之磨潤性質分析……………...............................26 4.3.4氮化鈦鍍層之磨潤性質分析…………………...............27 4.3.4氮化鋯鍍層之磨潤性質分析………...............................28 4.4鍍膜試片刮磨磨耗測試…….………………..……………….29 4.4.1鍍膜試片在不同滑動距離下試片的耐磨耗測試….…..29 4.4.2鍍膜試片在不同操作溫度下試片的耐磨耗測試………30 4.4.3刮磨磨耗破壞行為分析…………………………………30 第五章 結論與建議………………….………………….………..…..31 5.1 結論……………….…………………………………………...31 5.2 未來研究方向及建議………………………………………....31 表 索 引 表3.1 Cr鍍層濺鍍參數……………….………………..…………....…...33 表3.2 ZrN鍍層濺鍍參數...………………………………………….....33 表3.3 TiN鍍層濺鍍參數.…………………………………….……......33 表3.4 刮磨磨耗試驗實驗參數…………..…..…………………...…...34 圖 索 引 圖1.1 射出成型機……………….………………………………….….37 圖2.1磨耗過程中依運動方式的不同所分類的磨耗模式….………...38 圖2.2兩固體接觸時,外視面積與實際接觸面積之關係….…………39 圖2.3黏著磨耗(adhesive wear)的機構……..………...….……….…...39 圖2.4刮磨磨耗之硬質顆粒與材料表面間的作用形態…...….………40 圖2.5氧化磨耗的機構………….……………………………..……….41 圖2.6氧化磨耗之金屬磨屑氧化磨潤機制.………………………...…42 圖3.1刮磨磨耗機構..………………………………………………......43 圖3.2實驗流程圖……………………………………………………....44 圖3.3磨耗試片尺寸圖............................................................................45 圖3.4刮磨磨耗機構................................................................................46 圖3.5刮磨磨耗機全圖...........................................................................47 圖3.6矽膠加熱片安裝圖.......................................................................47 圖3-7瓦特密度與時間的關係曲線.................................................48 圖3.8 TE-77高頻往復式磨耗試驗機與運作圖示………...........49 圖3.9磨耗試片尺寸圖上試片................................................................50 圖4.1 L形懸臂尺寸圖.............................................................................51 圖4.2刀座支架尺寸圖............................................................................52 圖4.3刮磨磨耗測試線速度對耐磨耗性能之影響(25℃,8N)……......53 圖4.4刮磨磨耗測試線速度對耐磨耗性能之影響(150℃,8N)….........53 圖4.5在9.6m/s線速度下試驗前後試片的溫度比較圖(8N ).............54 圖4.6刮磨磨耗測試溫度對耐磨耗性能之影響(8N ,4.8m/s)..............54 圖4.7刮磨磨耗測試負載對耐磨耗性能之影響(25℃,4.8m/s).……....55 圖4.8橡膠輪實驗前後重量損失圖...…………………….……..55 圖4.9 S50C(Hv 200)試片經過熱處理後S50C-H(Hv 450)前後之刮磨磨耗重量損失(25℃,4.8m/s,24N) ……………………....56 圖4-10 S50C(Hv 200)試片磨耗面之SEM照片............................57 圖4-11圖4-11 S50C(Hv 200)試片磨耗面之SEM照片.....................58 圖4-12 S50C-H(Hv 450)試片磨耗面之SEM照片........................59 圖4-13 S50C-H(Hv 450)試片磨耗面之摩擦係數..........................60 圖4-14 SKH51(Hv 840)試片磨耗面之SEM照片.........................61 圖4-15 SKH51(Hv 840)試片磨耗面之摩擦係數...........................62 圖4-16 Cr鍍層(Hv 1050)試片磨耗面上試片之SEM照片................63 圖4-17 Cr鍍層(Hv 1050)試片磨耗面之SEM照片......................64 圖4-18 Cr鍍層(Hv 1050)試片磨耗面之摩擦係數.........................65 圖4-19 TiN鍍層(Hv 950)試片磨耗面之SEM照片......................66 圖4-20 TiN鍍層(Hv 950)試片磨耗面之SEM照片…………........67 圖4-21 ZrN鍍層(Hv 1180)試片磨耗面之上試片SEM照片.............68 圖4-22 ZrN鍍層(Hv 1180)試片磨耗面之SEM照片....................69 圖4-23 ZrN鍍層(Hv 1180)試片磨耗面之摩擦係數......................70 圖4-24在低負載時三種鍍膜之摩擦係數比較圖...............................71 圖4-25 在不同滑動距離下試片之重量損失比較圖....................72 圖4-26 刮磨磨耗測試溫度對Cr鍍層之影響…………….......73 圖4-27 刮磨磨耗測試溫度對TiN鍍層之影響........................74 圖4-29 刮磨磨耗測試溫度對ZrN鍍層之影響……………....75 圖4-30 刮磨磨耗表面之SEM…………………………………....76

    [1] G. Menning (Ed.), “Wear in Plastics Processing”, Hanser/Gardner
    Munich, 1995.
    [2] W.D. Mahler, Ph.D. Thesis, TU Darmsadt, 1975.
    [3] G. Paller, B Matthes, W. Herr, E.broszeit, “Tribological properties of r.f.-sputtered titanium-based hard coatings and their behaviour under plastics-processing conditions” Surface and Coatings Technology,Vol.14 ,pp.647-654,1991.
    [4] M. Heinze, G. Menning, G Paller, “Wear resistance of PVD coating in plastic processing” Surface and Coatings Technology ,Vol74-75, pp.658-663 ,1995.
    [5] M. Heinze, “Wear resistance of hard coating in plastics processing” Surface and Coatings Technology ,Vol.105 ,pp38-44,1998.
    [6] S. Kalpakjian, “Manufacturing Engineering and Technology”, 3rd
    Edition, Addison, Wesley, Menlo Park, CA, 1995.
    [7] Milacron Manufacturing Technologies, Anti-Wear Solutions, www.milacron.com.
    [8] 島尾永康, 光學, 華立圖書, pp.53, 1983
    [9] 村山洋一, 應用物理, 中央圖書, pp.687, 1974
    [10] K.H.Zum Gahr.,Microstructure and Wear of Materials
    , Tribology Series,1987.
    [11] DIN 50320:Verschleiβ-Begriffe, Analyse Von Verschlei βVorgangen, Gliederung des Verschlei βgebietes. Beuth Verlag ,Berlin ,1979.
    [12] E.Rabinowicz , “An adhesive wear model based on variations
    in strength values”,Wear, Vol.63 ,pp.175-181,1980.
    [13] C.Horst,Tribology: a systems approach to the science and technology of friction ,lubrication and wear ,Amsterdam , Elsevier Scientific Pub.Co., 1980.
    [14] T.C.Buttery, J.F.Archard,“Grinding and abrasive wear”, Proceedings of the Institution of Mechanical Engineers, Vol.185, pp.537-551,
    1970-71.
    [15] T.F.J.Quinn, J.L.Sullivan, D.M.Rowson, “Origins and development of oxidational wear at low ambient temperatures” Wear Vol.94, pp.175-191,1984.
    [16] T.F.J.Quinn ,W.O.Winer, “An experimental study of the ‘hot-spots’
    occurring during the oxidational wear of tool steel on sapphire” Journal of Tribology Vol.109, pp.315-320,1987.
    [17] M.Varvoulias, “The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials” Wear, Vol.173, pp.105-114,1994.
    [18] T.F.J.Quinn, “Computional methods applied to oxidational wear”, Wear Vol.199, pp.169-180,1996.
    [19] T.F.J.Quinn, “Oxidational wear modeling part III. The effects of speed and elevated temperatures” Wear Vol.216, pp.262-275,1998.
    [20] T.F.J.Quinn, “The oxidational wear of low alloy steels”Tribology International Vol.35, pp.691-715,2002.
    [21] F.H.Stott, “The role of oxidational in the wear of alloys”Tribology International Vol.31, pp.61-71,1998.
    [22] N.P.Suh, “The delamination theory of wear” Wear, Vol.25, pp.111-124,1973.
    [23] G.W. Stachowiak and A.W Batchelor, “Engineering Tribolog” Elaevier Press, 1993.
    [24]N.P. Suh and H.C. Sin “The Genesis of Friction” ,Wear ,Vol.69
    ,pp.91-114,1981
    [25] B. Suresha ,G.Chandramohan, Siddararmaiah, P.Samapthkumaran, S.Seetharamu, “Three-body abrasive wear behaviour of carbon andglass fiber reinforced epoxy composites”, Materials Science and Engineering A, Vol.443,pp285-291,2007.
    [26] T.Arai , H. Fujita, M. Watanable, Thin Solid Films, Vol.154, pp.391,1987
    [27] 銘優科技股份有限公司, http://www.miyo.com.tw/.
    [28] J.F.Archard, “Contact and rubbing of flat surfaces”,Journal of Appllied Physics, Vol.24, pp.981-988,1953.
    [29] 台中精機股份有限公司, http://www.or.com.tw/index_ch.htm.
    [30] 住友重機械工業, http://www.shi.co.jp/.

    無法下載圖示 全文公開日期 2010/12/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE