簡易檢索 / 詳目顯示

研究生: 吳彧愷
Yu-Kai Wu
論文名稱: 定向附著機制輔助成長化學氣相沉積二硫化錫 奈米薄片微結構與特性分析研究
Microstructure Analysis and Device Characterization of Oriented Attachment-Assisted Growth SnS2 Nanoflakes via Chemical Vapor Deposition Method
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 周賢鎧
Shyan-Kay Jou
陳士勛
Shih-Hsun Chen
葉炳宏
Bin-Hong Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 73
中文關鍵詞: 二維材料微結構二硫化錫氣相沉積定向附著成長機制
外文關鍵詞: 2D materials, microstructure, Tin disulfide, SnS2, vapor deposition, oriented attachment
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多合成奈米材料的溶液系統中,定向附著成長機制已經被發現,然而,這樣的生長機制尚未在氣相沉積二維奈米材料系統中被探討。此研究中,利用硫與錫粉末成長二硫化錫奈米薄片,自不同的生長階段焠火以探討其生長機制。結果發現,最初的階段殘餘的氧氣首先與錫反應產生了寬約10微米的六方型片狀二氧化錫多晶薄片,並決定了成長後的形狀。隨著置於爐中的成長時間增加,二氧化錫薄片中硫化的比例也隨之提高,藉由高倍率穿透式電子顯微鏡觀察不同硫化階段,發現二氧化錫與二硫化錫的晶格分別存在於單一個薄片中,表示錫、氧與硫三者並非固溶關係而是以混合物的形式共存於薄片中。此外,也利用快速傅立葉轉換配合選區電子繞射發現了在高度硫化的階段中大量的二氧化錫對著[001]晶軸轉以(110)的面向,並與二硫化錫的[001]晶軸及(100)面具有磊晶關係,進一步證實了生長機制為定向附著生長。為了觀察實驗參數對薄片成長的影響,分別調整前驅物的粉末量與生長材料的試片位置,並觀察到不一樣的薄片表面型態。其中,螺旋成長在過量的前驅物下被觀察到並證實了文獻中定向附著生長會產生螺旋差排並誘發螺旋成長的描述。


    The oriented attachment (OA) of aggregated molecular clusters and nanoparticles have been discovered in solutions for many nanomaterials. However, it has not been reported in vapor phase deposition system. We quenched a series of products by co-evaporation of tin and sulfur in the growth stages and found tin dioxide was first formed polycrystalline of hexagonal nanoflakes with lateral size of 10 μm. After extending the time of furnace cooling, the sulfur content in nanoflakes were increasing until the tin dioxide nanoflakes were totally transformed into single crystalline SnS2. We performed high-resolution transmission electron microscope and found SnO2-rich and SnS2-rich areas coexisted in the intermediate stage which proved the SnO2 is directly transformed into SnS2 instead of non-stoichiometry compound. Fast Fourier transform (FFT) and selected area electron diffraction (SAED) patterns also helped to confirm the OA mechanism with the epitaxial relationship of (110)SnO2//(100)SnS2 and [001]SnO2//[001]SnS2. Moreover, the growth modes was also probed by adjusting amount of source and locations of substrate in synthesis procedures. The observed spiral growth agreed with the existence of screw dislocations which induced from OA mechanism.

    Chapter 1: Introduction 1 1.1 The Fever of Two-Dimensional Semiconductors 1.2 Synthesis of 2D Alloys 1.2.1 Mechanical Exfoliation 1.2.2 Solvothermal Method 1.2.3 Vapor Phase Deposition 1.3 Characteristics of Layered SnS2 1.3.1 Structure of SnS2 1.3.2 Phase Stability of Tin Sulfides 1.3.3 Electrical Properties of SnS2 1.4 Research Motivation Chapter 2: Experimental Section 2.1 Synthesis of SnS2 Nanoflakes 2.1.1 Preparation and Precursors 2.1.2 Furnace Setup 2.2 Characterizations 2.2.1 Scanning Electron Microscope 2.2.2 Transmission Electron Microscope 2.2.3 Energy Dispersion Spectrometer 2.2.4 X-ray Diffractometer 2.2.5 Raman Spectrum 2.3 Electrical Properties Measurement Chapter 3: Results and Discussions 3.1 Morphology and Influence Condition of SnS2 Nanoflakes Growth 3.1.1 Out-of-plane Growth of SnS2 Nanoflakes 3.1.2 In-plane Growth of SnS2 Nanoflakes 3.1.3 Overgrowth of SnS2 Nanoflakes 3.2 Characterization of SnS2 Nanoflakes 3.2.1 Raman Spectrum 3.2.2 XRD Analysis 3.2.3 TEM Analysis 3.3 Growth Mechanism of SnS2 Nanoflakes 3.3.1 SEM Observation 3.3.2 XRD Analysis 3.3.3 TEM Analysis 3.3.4 Summary of Growth Mechanism 3.4 Electrical Properties Measurement of SnS2 Nanoflakes Chapter 4: Summary and Conclusions Chapter 5: Future Works References

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 2004, 306, 666-669.
    [2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, “Single-layer MoS2 Transistors,” Nat. Nanotechnol., 2011, 6, 147-150.
    [3] M. Derivaz, D. Dentel, R. Stephan, M. C. Hanf, A. Mehdaoui, P. Sonnet and C. Pirri, “Continuous Germanene Layer on Al(111),” Nano Lett., 2015, 15, 2510-2516.
    [4] B. J. Feng, Z. J. Ding, S. Meng, Y. G. Yao, X. Y. He, P. Cheng, L. Chen and K. H. Wu, “Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111),” Nano Lett., 2012, 12, 3507-3511.
    [5] T. Cao, G. Wang, W. P. Han, H. Q. Ye, C. R. Zhu, J. R. Shi, Q. Niu, P. H. Tan, E. Wang, B. L. Liu and J. Feng, “Valley-Selective Circular Dichroism of Monolayer Molybdenum Disulphide,” Nat. Commun., 2012, 3, 887.
    [6] K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, “Atomically Thin MoS2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett., 2010, 105, 136805.
    [7] L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen and Y. B. Zhang, “Black Phosphorus Field-effect Transistors,” Nat. Nanotechnol., 2014, 9, 372-377.
    [8] C. H. Zhang, L. Fu, S. L. Zhao, Y. Zhou, H. L. Peng and Z. F. Liu, “Controllable Co‐segregation Synthesis of Wafer‐scale Hexagonal Boron Nitride Thin Films,” Adv. Mater., 2014, 26, 1776-1781.
    [9] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, “Electronics Based on Two-Dimensional Materials,” Nat. Nanotechnol., 2014, 9, 768-779.
    [10] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, “Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems,” Nat. Nanotechnol., 2014, 9, 780-793.
    [11] F. Schwierz, J. Pezoldt and R. Granzner, “Two-Dimensional Materials and Their Prospects in Transistor Electronics,” Nanoscale, 2015, 7, 8261-8283.
    [12] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, “Boron Nitride Substrates for High-Quality Graphene Electronics,” Nat. Nanotechnol., 2010, 5, 722-726.
    [13] Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, “Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene,” Nature, 2009, 459, 820-823.
    [14] W. J. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo and L. J. Li, “Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping,” ACS Nano, 2011, 5, 7517-7524.
    [15] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, “Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane,” Science, 2009, 323, 610-613.
    [16] J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan and E. S. Snow, “Properties of Fluorinated Graphene Films,” Nano Lett., 2010, 10, 3001-3005.
    [17] J. Wu, L. M. Xie, Y. G. Li, H. L. Wang, Y. J. Ouyang, J. Guo and H. J. Dai, “Controlled Chlorine Plasma Reaction for Noninvasive Graphene Doping,” J. Am. Chem. Soc., 2011, 133, 19668-19671.
    [18] J. O. Sofo, A. S. Chaudhari and G. D. Barber, “Graphane: A two-Dimensional Hydrocarbon,” Phys. Rev. B, 2007, 75, 153401.
    [19] H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong and T. Palacios, “Integrated Circuits Based on Bilayer MoS2 Transistors,” Nano Lett., 2012, 12, 4674-4680.
    [20] K. Kang, S. E. Xie, L. J. Huang, Y. M. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller and J. Park, “High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity,” Nature, 2015, 520, 656-660.
    [21] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto and K. S. Novoselov, “Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films,” Science, 2013, 340, 1311-1314.
    [22] D. De, J. Manongdo, S. See, V. Zhang, A. Guloy and H. Peng, “High On/Off Ratio Field Effect Transistors Based on Exfoliated Crystalline Sns2 Nano-Membranes,” Nanotechnology, 2012, 24, 025202.
    [23] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol., 2013, 8, 497-501.
    [24] J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li and K. Kalantar-zadeh, “Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing,” ACS Nano, 2015, 9, 10313-10323.
    [25] S. Adachi, P. Capper, S. Kasap and A. Willoughby, “Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors,” Wiley, 2009, 28.
    [26] Y. Wang, Y. V. Morozov, M. Zhukovskyi, R. Chatterjee, S. Draguta, P. Tongying, B. Bryant, S. Rouvimov and M. Kuno, “Transforming Layered to Nonlayered Two-Dimensional Materials: Cation Exchange of SnS2 to Cu2SnS3,” ACS Energy Lett., 2016, 1, 175-181.
    [27] P. Schmidt, M. Binnewies, R. Glaum and M. Schmidt, in Advanced Topics on Crystal Growth, ed. S. O. Ferreira, InTech, 2013, Ch. 9.
    [28] M. Zhang, J. X. Wu, Y. M. Zhu, D. O. Dumcenco, J. H. Hong, N. N. Mao, S. B. Deng, Y. F. Chen, Y. L. Yang, C. H. Jin, S. H. Chaki, Y. S. Huang, J. Zhang and L. M. Xie, “Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport,” ACS Nano, 2014, 8, 7130-7137.
    [29] Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y.-S. Huang and L. M. Xie, “Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys,” ACS Nano, 2013, 7, 4610-4616.
    [30] Z. Deng, D. Cao, J. He, S. Lin, S. M. Lindsay, Y. Liu, “Solution Synthesis of Ultrathin Single-Crystalline SnS Nanoribbons for Photodetectors via Phase Transition and Surface Processing,” ACS Nano, 2012, 6, 6197-6207.
    [31] T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu and Z. Guo, “Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS2 to Orthorhombic-SnS,” ACS Nano, 2014, 8, 8323-8333.
    [32] C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y. Q. Lan, J. Bao and J. Zhu, “Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors,” ACS Nano, 2014, 8, 3761-3770.
    [33] Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. Long Hsu, K. Zhang, H. Li, Z.Y. Juang, M. S. Dresselhaus, L.J. Li and J. Kong, “Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition,” Nano Lett., 2010, 10, 4134-4139.
    [34] J. Xia, X. Z. Li a, X. Huang, N. Mao, D. D. Zhu, L. Wang, H. Xu and X. M. Meng, “Physical Vapor Deposition Synthesis of Two-Dimensional Orthorhombic SnS Nanoflakes with Strong Angle/Temperature-Dependent Raman Responses,” Nanoscale, 2016, 8, 2063-2070.
    [35] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden and X. Xu. “Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization,” ACS Nano, 2013, 7, 2768-2772.
    [36] L. Gao, G. X. Ni, Y. Liu, B. Liu, A. H. Castro Neto and K. P. Loh, “Face-to-Face Transfer of Wafer-Scale Graphene Films,” Nature, 2014, 505, 190-194.
    [37] L. Lin, J. Li, H. Ren, A. L. Koh, N. Kang, H. Peng, H. Q. Xu and Z. Liu, “Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene,” ACS Nano, 2016, 10, 2922-2929.
    [38] D. Geng, L. Meng, B. Chen, E. Gao, W. Yan, H. Yan, B. Luo, J. Xu, H. Wang, Z. Mao, Z. Xu, L. He, Z. Zhang, L. Peng and G. Yu, “Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface,” Adv. Mater., 2014, 26, 6423-6429.
    [39] C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen and L. J. Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition,” Nano Lett., 2011, 11, 3612-3616.
    [40] A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones and M. Terrones, “Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers,” ACS Nano, 2013, 7, 5235-5242.
    [41] S. J. Yun, S. H. Chae, H. Kim, J. C. Park, J. H. Park, G. H. Han, J. S. Lee, S. M. Kim, H. M. Oh, J. Seok, M. S. Jeong, K. K. Kim, Y. H. Lee, “Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils,” ACS Nano, 2015, 9, 5510-5519.
    [42] I. Bilgin, F. Liu, A. Vargas, A. Winchester, M. K. Man, M. Upmanyu, K. M. Dani, G. Gupta, S. Talapatra, A. D. Mohite and S. Kar, “Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality,” ACS Nano, 2015, 9, 8822-8832.
    [43] D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O. L. Sanchez, Y. C. Kung, D. Krasnozhon, M. W. Chen, S. Bertolazzi, P. Gillet, I. M. A. Fontcuberta, A. Radenovic and A. Kis, “Large-Area Epitaxial Monolayer MoS2,” ACS Nano, 2015, 9, 4611-4620.
    [44] S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He and L. J. Li, “Band Gap-Tunable Molybdenum Sulfide Selenide Monolayer Alloy,” Small, 2014, 10, 2589-2594.
    [45] Q. Ma, M. Isarraraz, C. S. Wang, E. Preciado, V. Klee, S. Bobek, K. Yamaguchi, E. Li, P. M. Odenthal, A. Nguyen, D. Barroso, D. Z. Sun, G. V. Palacio, M. Gomez, A. Nguyen, D. Le, G. Pawin, J. Mann, T. F. Heinz, T. S. Rahman and L. Bartels, “Postgrowth Tuning of the Bandgap of Single-Layer Molybdenum Disulfide Films by Sulfur/Selenium Exchange,” ACS Nano, 2014, 8, 4672-4677.
    [46] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg and T. Zhai, “Ultrathin SnSe2 Nanoflakes Grown by Chemical Vapor Deposition for High-Performance Photodetectors,” Adv. Mater., 2015, 27, 8035-8041.
    [47] X. Zhou, Q. Zhang, L. Gan, H. Li and T. Zhai, “Large-Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors,“ Adv. Funct. Mater., 2016, 26, 4405-4413.
    [48] C. Fan, Y. Li, F. Lu, H.-X. Deng, Z. Wei and J. Li, “Wavelength Dependent UV-Vis Photodetectors from SnS2 Nanoflakes,” RSC Adv. 2016, 6, 422-427.
    [49] T. Shimada, F. S. Ohuchi and B. A. Parkinson. “Thermal Decomposition of SnS2 and SnSe2: Novel Molecularbeam Epitaxy Sources for Sulfur and Selenium,” J. Vac. Sci. Technol. A., 1992, 10, 539-542.
    [50] D. Yang, B. Li, C. Hu, H. Deng, D. Dong, X. Yang, K. Qiao, S. Yuan and H. Song. “Controllable Growth Orientation of SnS2 Nanoflakes for Low-Noise, High-Photoswitching Ratio, and Ultrafast Phototransistors,” Adv. Optical Mater. 2016, 4, 419-426.
    [51] L. Huang, Y. Yu, C. Li and L. Cao. ” Substrate Mediation in Vapor Deposition Growth of Layered Chalcogenide Nanoplates: A Case Study of SnSe2,” J. Phys. Chem. C., 2013, 117, 6469-6475.
    [52] J. Xia, D. Zhu, X. Li, L. Wang, L. Tian, J. Li, J. Wang, X. Huang and X. Meng. “Epitaxy of Layered Orthorhombic SnS–SnSxSe(1−x) Core–Shell Heterostructures with Anisotropic Photoresponse,” Adv. Funct. Mater., 2016, 26, 4673-4679.
    [53] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. Tang, M. Kan, J. Feng, Q. Sun and Z. Liu. “Epitaxial Monolayer MoS2 on Mica with Novel Photoluminescence,” Nano Lett., 2013, 13, 3870-3877.
    [54] J. Xia, D. Zhu, X. Li, L. Wang, L. Tian, J. Li, J. Wang, X. Huang, and X. Meng. “Large-Scale Growth of Two-Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors,” Adv. Funct. Mater., 2015, 25, 4255-4261.
    [55] J. Liu, Q. Huang, Y. Qian, Z. Huang, F. Lai, L. Lin, M. Guo, W. Zheng and Y. Qu. “Screw Dislocation-Driven Growth of the Layered Spiral-type SnSe Nanoplates,” Cryst. Growth Des., 2016, 16, 2052-2056.
    [56] J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, and X.M. Meng. “Large‐Scale Growth of Two‐Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors,” Adv. Funct. Mater., 2015, 25, 4255-4261.
    [57] A. J. Gratz, Hillner, P. E. Hillner and P. K. Hansma, “Step Dynamics and Spiral Growth on Calcite,” Geochimica et Cosmochimica Acta., 1993, 57, 491-495.
    [58] Iijima, Sumio. "Helical Microtubules of Graphitic Carbon," Nature, 1991, 354, 56-58.
    [59] W. K. Burton, N. Cabrera and F. C. Frank. “The Growth of Crystals and the Equilibrium Structure of their Surfaces,” Trans. R. Soc. London A, 1951, 243, 299-358.
    [60] R. L. Penn and J. F. Banfield. ” Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals” Science, 1998, 281, 969-970.
    [61] J. H. Zheng, Q. Jiang and J. S. Lian. “Synthesis and Optical Properties of Flower-like ZnO Nanorods by Thermal Evaporation Method,” Applied Surface Science, 2011, 257, 5083-5087.
    [62] J. Ma, Danni Lei, X. Duan, Q. Li, T. Wang, A. Cao, Y. Mao and W. Zheng “Designable Fabrication of Flower-like SnS2 Aggregates with Excellent Performance in Lithium-ion Batteries,” RSC Advances, 2012, 2, 3615-3617.
    [63] W. Shi, L. Huo, H. Wang, H. Zhang, J. Yang and P. Wei. “Hydrothermal Growth and Gas Sensing Property of Flower-Shaped SnS2 Nanostructures,” Nanotechnology, 2006, 17, 2918-2924.
    [64] Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L.A. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson and P. Sutter. “Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics,” ACS Nano, 2014, 8, 10743-10755.
    [65] A. J. Smith, P. E. Meek and W. Y. Liang. “Raman Scattering Studies of SnS2 and SnSe2,” J. Phys. C: Solid State Phys., 1977, 10, 1321-1333.
    [66] G. Su, V. G. Hadjiev, P. E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M. Ajayan, Jun Lou and H. Peng. “Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application,” Nano Lett., 2015, 15, 506-513.
    [67] S. Z. Butler, S. M. Hollen, L. Cao, Yi Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A.l F. Ismach, Ezekiel Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, Li Shi, M. G. Spencer, M. Terrones, W. Windl and J. E. Goldberger. “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano, 2013, 7, 2898-2926.
    [68] H. B. Weiser and W. O. Milligan. “X-Ray Studies on the Hydrous Oxides. II. Stannic Oxide,” J. Phys. Chem., 1932, 36, 3030-3038.
    [69] V. M. Yuwono, N. D. Burrows, J. A. Soltis and R. L. Penn. “Oriented Aggregation: Formation and Transformation of Mesocrystal Intermediates Revealed,” J. Am. Chem. Soc., 2010, 132, 2163-2165.
    [70] L. M. Xie, “Two-Dimensional Transition-Metal Dichalcogenide Alloys: Preparation, Characterization and Applications,” Nanoscale, 2015, 7, 18392-18401.
    [71] Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson and P. Sutter, “Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics,” ACS Nano, 2014, 8, 10743-10755.
    [72] B. Ram and A. K. Singh, “Strain-induced Indirect-to-Direct Band-Gap Transition in Bulk SnS2,” Phys. Rev. B, 2017, 95, 075134.
    [73] L. Amalraj, C.Sanjeeviraja and M. J. Jayachandran, “Spray Pyrolysised Tin Disulphide Thin Film and Characterisation,” Cryst. Growth, 2002, 234, 683-689.
    [74] C. Julien, M. Eddrief, I. Samaras and M. Balkanski, “Optical and Electrical Characterizations of SnSe, SnS2 and SnSe2 Single Crystals,” Mater. Sci. Eng. B, 1992, 15, 70-72.
    [75] O. Madelung, “Semiconductors: Data Handbook,” 3rd ed., Springer, New York, 2004.
    [76] A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids and G. Mezinskis, “Structural and Electrical Properties of SnS2 thin Films,” 2016, 173, 52-61.
    [77] X. Zhou, Q. Zhang, L. Gan, H. Li, J. Xiong and T. Zhai, “Booming Development of Group IV-VI Semiconductors: Fresh Blood of 2D Family,” Adv. Sci. 2016, 3, 1600177.
    [78] S. Lebègue, T. Björkman, M. Klintenberg, R. M. Nieminen and O. Eriksson, “Two-Dimensional Materials from Data Filtering and Ab Initio Calculations,” Phys. Rev. X, 2013, 3, 031002.
    [79] A. Kuc, “Low-Dimensional Transition-Metal Dichalcogenides,” Chem. Modell., 2014, 11, 1-29.
    [80] L. A. Burton, D. Colombara, R. D. Abellon, F. C. Grozema, L. M. Peter, T. J. Savenije, G. Dennler, and A. Walsh. “Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2,” Chem. Mater., 2013, 25, 4908−4916.

    無法下載圖示 全文公開日期 2018/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2020/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE