簡易檢索 / 詳目顯示

研究生: 陳宥蓉
You-Rong Chen
論文名稱: 不同溫度鍛造加工對 AZ31/SiCp 鎂基複合材料之機械性質及微觀結 構影響
Effect of different temperature forging process of AZ31/SiCp magnesium matrix composites on their mechanical properties and microstructure
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chun Chiu
向四海
Su - Hai Hsiang
陳元方
Yuan-Fang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 鎂基複合材料微米碳化矽顆粒鍛造機械性質
外文關鍵詞: Magnesium metal matrix composite(Mg MMCs), SiC partical, Forging, Mechanical properties
相關次數: 點閱:253下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂基複合材料具有比鎂合金相對優異的力學性能,經由在基材中加入陶瓷顆粒、纖維、晶鬚等強化相,使基材與與強化相擁有良好的結合性,進一步提升複合材料之機械性質。
    本研究的基材選用AZ31鎂合金添加重量百分比為0.5 wt.%之碳化矽顆粒SiCp作為強化相,以重力鑄造與機械攪拌方式進行鎂基複合材料的製備。為求材料成分均勻,對製備後的鎂基複合材料進行T4固溶處理,消除偏析使材料均質化,以利後續進行加工。之後對鎂基複合材料進行二次加工,採用不同的鍛造溫度對鎂基複合材料的機械性質及微觀結構進行探討與研究。
    從實驗結果中可以發現添加SiCp能夠透過晶粒細化有效的提升材料之降伏強度及延展性,透過T4熱處理能使得β-Mg_17 Al_12相溶解於機材中並析出鋁錳相,該相的析出有助於提升材料之延展性,而透過兩種溫度鍛造能使材料產生動態再結晶使晶粒尺寸大小更細並提升材料延展性及拉伸強度,且在SiCp添加的複合材料中發現微小團聚現象,推測其為造成材料伸長量下降的主要原因。
    實驗結果顯示AZ31鎂合金經150℃鍛造得到最好的機械性質(降伏強度:74.1 MPa極限拉伸強度:135.9 MPa伸長量3.7%),而AZ31/0.5 wt.% SiCp經150℃鍛造得到最好的伸長量(4.9%),但在220℃鍛造下降伏強度(83.6 MPa)與極限拉伸強度(152.2 MPa)有更優異的提升。


    Magnesium-based composites have superior mechanical properties comparing with magnesium alloys by adding a reinforcement such as ceramic particles, fibers or whiskers to the metal matrix. The metal matrix presents form good bonding with the reinforcement. The mechanical properties of the composite then are further improved.
    In this study, AZ31 magnesium alloy was added with 0.5 wt.% by weight of silicon carbide particles(SiCp) of reinforcement in order to obtain uniform material composition. The prepared magnesium-based composite material is subjected to T4 treatment to eliminate segregation and homogenize the material for subsequent processing. Afterwards, the magnesium-based composites were subjected to secondary processing, and the mechanical properties and microstructure of the magnesium-based composites were investigated and studied using different forging temperatures.
    From the experimental results, it can be found that adding additional SiCp in the matrix can effectively enhance the material's strength and ductility through grain refinement. Through T4 heat treatment, the β-Mg_17 Al_12 phase can be dissolved in the material and aluminum precipitates. The precipitation of this phase increase the ductility of the material. Two kinds of temperatures forging experiment enables dynamic recrystallization of the material to refine the grain size and increase its ductility and tensile strength. And a small agglomeration phenomenon was found in the composite material added by SiCp, which is presumed to be the main cause of the decrease in the elongation of the material.
    The experimental results show that the AZ31 magnesium alloy is forged at 150°C to obtain the best mechanical properties (YS: 74.1 MPa ,UTS: 135.9 MPa ,EL%: 3.7%),and the AZ31/0.5 wt.% SiCp forged at 150 °C obtain the best EL%(4.9%), but the YS (83.6 MPa) and the UTS (152.2 MPa) at 220°C were improved.

    摘要 I Abstract II 致謝 V 目錄 VI 圖目錄 X 表目錄 XIV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 本實驗室鎂基複合材製程回顧 3 1.2.2 固溶處理對鎂基複合材料之機械性質的影響 6 1.2.3 強化相SiC對鎂基複合材料之機械性質的影響 10 1.2.4 鍛造加工對鎂基複合材料之機械性質的影響 14 1.3 文獻回顧心得 18 1.4 研究動機與目的 19 第2章 鎂合金相關性質 20 2.1 鎂及鎂合金的特性 20 2.1.1 鎂的簡介 20 2.1.2 鎂合金特性 20 2.2 鎂合金符號標示法 21 2.3 合金元素對鎂合金的影響 23 2.3.1 鋁元素的影響 23 2.3.2 鋅元素的影響 24 2.3.3 錳元素的影響 25 2.3.4 鐵元素的影響 25 2.3.5 矽元素的影響 25 2.3.6 銅元素的影響 26 2.4 鎂基複合材料的強化理論 26 2.4.1 晶界強化 26 2.4.2 Orowan強化 27 2.4.3 熱膨脹係數差異影響 27 2.4.4 負荷影響(Load bearing) 28 2.5 鍛造加工 28 2.5.1 鍛造加工分類 28 2.5.2 鍛造的特點 29 2.6 鎂合金熱處理 30 2.6.1 熱處理參數的影響 32 第3章 實驗方法與步驟 33 3.1 實驗材料 35 3.2 實驗設備 35 3.2.1 鑄造用熔爐 35 3.2.2 高溫熱處理爐 38 3.2.3 濕式自動研磨/拋光機 39 3.2.4 光學顯微鏡 40 3.2.5 X光繞射 41 3.2.6 掃描式電子顯微鏡 42 3.2.7 微型維克氏硬度機 43 3.2.8 動態拉伸試驗機 44 3.2.9 連桿式沖床 46 3.3 鎂合金複合材料的製備 46 3.4 鑄錠之拉伸試片規劃 47 第4章 結果與討論 49 4.1 鍛造材料測試 49 4.2 微觀結構 51 4.2.1 OM金相分析 51 4.2.2 平均晶粒尺寸分析 61 4.3 SEM微觀組織分析 65 4.4 XRD分析 70 4.5 機械性質分析 71 4.5.1 硬度試驗 71 4.5.2 拉伸試驗 75 第5章 結論 79 第6章 未來研究方向 81 參考文獻 83

    [1] 吳懿璋(2014),強化相粒徑與含量對AZ61/SiCp鎂合金複合材料擠製加工及後續退火製程在機械性質影響之研究,國立臺灣科技大學工學院機械工程系研究所碩士學位論文。
    [2] D. Liu(2017),”Microstructure and tensile properties of Mg-3Al-1Zn sheets produced by hotroller-cold-material rolling”,Materials Science & Engineering A 706 pp.304–310.
    [3] Kun Wu(2010),”Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process”, Materials and Design 31 pp.3929–3932.
    [4] 林柏州(2014),等徑轉角擠型(ECAE)製程對AM60/〖Al〗_2 O_3p鎂基複合材料微結構及機械性質之影響,國立中正大學機械工程學系研究所博士論文。
    [5] 陳志亦(2005),鎂基複合材料AZ91D/SiCp製備之研究,國立中正大學機械工程學系研究所碩士學位論文。
    [6] 洪品森(2009),鎂基複合材料的製備及其熱處理後機械性質之研究,國立中正大學機械工程學系研究所碩士學位論文。
    [7] 陳仲威(2010),添加AlNp鎂基複材製備及機械性質之研究,國立中正大學機械工程學系研究所碩士學位論文。
    [8] 何佳翰(2014),AZ31/SiCp鎂基複合材料幾製板材之機械性質與成形性影響之探討,國立臺灣科技大學機械工程學系研究所碩士學位論文。
    [9]X.J.Wang,N.Z. Wang,L.Y. Wang,X.S. Hu,K. Wu,Y.Q. Wang,&Y.D. Huang, Y. (2014),”Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing”, Materials & Design, 57, pp.638-645.
    [10]L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang(2016),” Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys”, Journal of Magnesium and Alloys, Vol. 4, Issue 2, pp.115-122.
    [11]Xue-fei Sun (2018),”High strength SiCp/AZ91 composite assisted by dynamic precipitated 〖Mg〗_17 〖Al〗_12 phase”, Journal of Alloys and Compounds 732 pp.328-335.
    [12]X.J.Wang(2013),”Microstructure evolutions of SiCp/AZ91 Mg matrix composites during hot compression”, Materials Science and Engineering: A pp.139-146
    [13]K.B. Nie(2012),” Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration”, Materials Science and Engineering A 540 pp.123–p.129.
    [14]K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu(2011), “Effect of ultrasonic vibration and solution heat treatment on microstructures and tensile properties of AZ91 alloy”, Materials Science and Engineering A 528 pp.7484-7487.
    [15]Xing Yang Liu(2004),”Review of recent studies in magnesium matrix composite”, Journal of materials Science 39, pp.6153-6171.
    [16] K.K. Deng(2010),”Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures”, Materials Science and Engineering A 527 pp.1630–1635.
    [17] 陳莘樺(2014),改善鎂合金及鎂基複合材料AZ61/SiCp鑄錠品質並探討製程對其機械性質的影響,國立臺灣科技大學機械工程學系研究所碩士學位論文。
    [18] 劉彥辰(2012), AM60/Al_2 O_3p鎂基複合材料擠製管之機械性質與微觀組織研究,國立中正大學機械工程學系研究所碩士學位論文。
    [19]劉文勝(2000),AZ61 鎂合金的疲勞性質與破壞分析,國立中央大學機械工程學系研究所碩士論文。
    [20]李智堯(2018),不同轉角及道次之等徑轉角擠製對AZ31/WS_2 INT鎂基複合材料微觀結構及機械性質影響之研究,國立臺灣科技大學機械工程研究所碩士學位論文。
    [21] M. Habibnejad-Korayem(2009),”Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials Science and Engineering A, Vol. 519, pp.198-203.
    [22]蔡承勳(2013),不同製程對AZ61/Al2O3P鎂基複合材料機械性質及疲勞之影響,國立台灣科技大學機械工程系研究所碩士論文。
    [23] 康永林、王朝輝(2007),半固態工藝製備奈米SiC顆粒增強AM60鎂合金的研究,特種鑄造及有色合金,第八期,第18-20頁。
    [24]許源泉(2004),塑性加工學,全華科技圖書股份有限公司。
    [25] Chi-Yuan Cho(2006),”Effect of cooling rate on Mg17Al12 volume fraction and compositional inhomogeneity in a sand-cast AZ91D magnesium plate”, Materials Transactions, Vol. 47, No. 8,pp. 2060 – 2067.
    [26]周暾煜(2016),等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響,國立台灣科技大學機械工程學系碩士論文。

    QR CODE