簡易檢索 / 詳目顯示

研究生: 蘇士銘
Shih-Ming Su
論文名稱: 不同溫度及道次等通道轉角擠製(ECAP)對AZ61/Al2O3鎂基複合材料機械性質及腐蝕之影響
Effect of different temperature and pass Equal Channel Angular Pressing (ECAP)of AZ61/Al2O3 magnesium matrix composites on their mechanical properties and corrosion
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
曾有志
徐茂濱
林景崎
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 133
中文關鍵詞: 鎂基複合材料Al2O3等通道轉角擠製重力鑄造機械性質鹽霧試驗
外文關鍵詞: Magnesium-based composite materials, Al2O3, Equal Channel Angular Pressing, Gravity casting, Mechanical properties, Salt spray test
相關次數: 點閱:308下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以AZ61鎂合金作為基材,以微米Al2O3為強化相,利用重力鑄造及機械攪拌製備鎂基複合材,Al2O3之添加量為1 wt. %及2 wt. %,以水刀切割成試棒後進行T4固溶處理,以120°及路徑Bc之等徑轉角擠製加工(ECAP)進行擠製,探討不同溫度及道次對於AZ61/Al2O3鎂基複合材料之微觀結構、機械性質及腐蝕性。
    從實驗中可以添加Al2O3因散布強化有效的提升材料之降伏強度、極限抗拉強度、伸長量、硬度,而透過ECAP擠製加工使得大晶粒周圍產生動態再結晶而晶粒細化,其機械性質進一步提升,但溫度300°C成形性差,試棒經過1道次後幾乎快斷裂,在鹽霧試驗中,經過T4熱處理能使得Mg17Al12溶解於材中並析出Al-Mn,該項有助於提升耐腐蝕性,而鎂基複合材料腐蝕從小晶粒的晶界開始腐蝕,強化相、晶粒細化以及析出物形成保護層,提升耐腐蝕性。


    The experiment is to useAZ61 magnesium alloy as matrix and micron Al2O3 as the strengthening phase to produce magnesium-based composites by gravity casting. In addition, the amount of Al2O3 are 1, 2 wt.%. After T4 solution treatment is carried out, materials will be extruded with 120° ECAP dies. The microstructure, mechanical properties and corrosion of the AZ61/Al2O3 magnesium-based composite material at different temperatures and passes are discussed. Disscusions of effects about different temperatures and pass of ECAP will be included in this experiment.
    From the experiment, Al2O3 is added to effectively improve the yield strength, ultimate tensile strength, elongation, and hardness of the material due to grain refinement. Smaller grains around large grains is produced by dynamic recrystallization through ECAP. Mechanical properties are further improved. However, the formability of ECAP is poor at 300°C of the temperature, and the rod almost was broken quickly after 1 pass. In the salt spray test, T4 heat treatment makes Mg17Al12 dissolve in the material and precipitate Al-Mn, which helps materials improve it. Corrosion of magnesium-based composite materials starts from the grain boundaries of small grains. It forms a protective layer to improve corrosion resistance by strengthening phase, grain refinement and precipitates.

    第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 熔煉相關文獻 1.2.2 添加強化相增強機械性質相關文獻 1.2.3 等通道轉角擠壓(ECAP)相關文獻 1.2.4 腐蝕相關文獻 1.3 文獻回顧整理 1.4 研究動機與目的 第二章 研究理論基礎 2.1 鎂的基本性質 2.2 鎂合金之特性 2.3 鎂合金符號標示方法 2.4 合金元素對鎂合金的影響 2.5 鎂基複合材料強化理論 2.6 氧化鋁(Al2O3)之特性 2.7等通道轉角擠製(Equal Channel Angular Pressing) 2.8鎂的腐蝕 2.8.1腐蝕的定義 2.8.2影響鎂腐蝕的因素 2.9鎂合金鑄造 第三章 實驗方法與步驟 3.1實驗步驟 3.2 實驗材料 3.3 實驗設備 3.4鎂基複合材料製備 3.5 ECAP製程及試棒規劃 3.6拉伸試片規劃 3.7鹽霧試驗腐蝕速率計算 第四章 結果與討論 4.1 鎂基複合材料製備 4.2 ECAP擠製加工溫度測試 4.3 AZ61/Al2O3微觀結構分析 4.3.1 OM金相分析 4.3.2 平均晶粒尺寸分析 4.3.3 SEM微觀組織分析 4.3.4 XRD分析 4.4 AZ61/Al2O3鎂基複合材料機械性質分析 4.4.1 硬度試驗 4.4.2 拉伸試驗 4.5 鹽霧試驗 4.5.1 鹽霧試驗表面巨觀圖 4.5.2 鹽霧試驗微觀觀察 4.5.3 SEM微觀觀察 4.5.4 鹽霧試驗腐蝕速率 4.6 研究優化及亮點 第五章 結論 第六章 未來研究方向 參考文獻

    [1][1] Valiev, R. Z., Islamgaliev, R. K., & Alexandrov, I. V. (2000), Bulk nanostructured materials from severe plastic deformation. Progress in materials science, 45(2), Pages 103-189
    [2][2] A. S. J. Al-Zubaydi, A.P. Zhilyaev, S.C. Wang, P.A.S. Reed (2015), Superplastic behavior of AZ91 magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A Volume 637, Pages 1-11
    [3]李智堯 (2018),不同轉角及道次之等徑轉角擠製對AZ31/WS_2 INT鎂基複合材料微觀結構及機械性質影響之研究,國立臺灣科技大學機械工程學系碩士論文
    [4][4] 黃政揚 (2015),WS2無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之 研究,國台灣科技大學機械工程學系碩士論文
    [5][5] 林穎智 (2018),鎂基複合材料機械性質及其熱傳導性之研究,國立臺灣科技大學機械工程學系碩士論文
    [6][6] M. H. K. (2009), Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles,Materials. Science and Engineering A, 519(1-2), Pages 198-203
    [7][7] Y. Yuan, A. Ma, J. Jiang., F. Lu, W. Jian, D. Song, Y. T. (2013), Optimizing the strength and ductility of AZ91 Mg alloy by ECAP and subsequent aging. Materials Science and Engineering A(588), Pages 329-334
    [8][8] Huang, S.-J., Ho, C.-H., Feldman, Y., Tenne, R. (2016), Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes. Journal of Alloys and CompoundsVolume 654, Pages 15-22
    [9][9] Huang, S.-J., Ali, A.N. (2019), Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites. Journal of Materials Processing Technology 272, Pages 28-39
    [10]Shahar, I., Hosaka, T., Yoshihara, S., & MacDonald, B. (2017), Mechanical and corrosion properties of AZ31 Mg alloy processed by Equal-Channel Angular Pressing and Aging. Procedia engineering. 184, 423-431
    [11]洪品森 (2009),鎂基複合材料的製備及其熱處理後機械性質之研究,國立中正大學機械工程學系碩士論文
    [12]周暾煜 (2016),等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響,國立台灣科技大學機械工程學系碩士論文
    [13]黃建忠 (2013),強化相粒徑對AZ61/SiCP鎂基複合材料鑄錠及擠型材之機械性質影響的研究,國立台灣科技大學機械工程學系碩士論文
    [14]吳懿璋 (2014),強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究,國立臺灣科技大學機械工程學系碩士論文
    [15]陳永霖 (2018),不同碳材添加物對經高能球磨(HEBM)或等徑轉角擠壓(ECAP)之AZ31鎂合金儲氫性能之影響,國立臺灣科技大學機械工程學系碩士論文
    [16]王偉成 (2017),電解液中添加WS2無機奈米顆粒對AZ31鎂合金的微弧氧化陶瓷膜影響之研究,國立台灣科技大學機械工程學系碩士論文
    [17]鹽水噴霧試驗法 CNS8886 (2002), 經濟部標準檢驗局
    [18]ASTM-B117 (2011), 美國材料與試驗協會
    [19]Song, G., Bowles, A. L., & StJohn, D. H. (2004), Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering: A, 366(1), 74-86
    [20]Zakaria, H. (2014), Microstructural and corrosion behavior of Al/SiC metal matrix composites. Volume 5, Issue 3, Pages 831-838

    QR CODE