簡易檢索 / 詳目顯示

研究生: 沈尚霖
Shang-Lin Shen
論文名稱: 鈀對金觸媒氧化活性的提升效應
Promotion effect of palladium on Au/Al2O3 catalyst in the oxidation of CO
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 曾堯宣
Yao-Hsuan Tseng
萬本儒
Ben-Zu Wan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 金觸媒氧化鋁CO氧化反應
外文關鍵詞: gold catalyst, palladium, aluminum oxide, CO oxidation
相關次數: 點閱:210下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 觸媒的吸附與催化特性可用來改善環境品質,將有毒的一氧化碳轉化成無毒的二氧化碳即是觸媒重要的應用之一。在室溫下,金觸媒的CO氧化活性比傳統的觸媒高出許多,其中Au / Al2O3是最受矚目的金觸媒之一。本研究的目標為發展室溫下具有較Au / Al2O3更佳CO氧化活性的金觸媒,方法是在金觸媒的製備過程中添加Pd,藉由雙金屬觸媒的增效作用(synergetic effect),達到提升觸媒活性的目的。
    為了瞭解鈀的效應,本研究以含浸法將鈀金屬佈於γ-Al2O3上,製備出Pd/Al2O3觸媒,再利用沉積沉澱法將Au置於Pd/Al2O3上,製備出Au-Pd/Al2O3。另外再製備Au/Al2O3與Pd /Al2O3觸媒作為對照,供比較分析用。
    所製備的觸媒以感應耦合電漿原子放射光譜儀(ICP-AES)、氮氣吸附(BET)、以X-ray繞射(XRD)、光電子能譜儀(XPS)、程溫脫附(CO-TPD)等儀器進行觸媒性質的鑑定。
    觸媒的活性以CO的氧化測定,反應在常溫常壓下進行,使用一個由玻璃做的微反應器,反應氣體以連續流動的方式通過觸媒床,進料中CO的濃度為500ppm其餘為10%O2及He,主要的測試變數為進料流速。
    研究結果顯示,不同金屬含量的觸媒,其比表面積、平均孔徑與孔體積都很接近。金與鈀因承載的方法不同,在擔體γ-Al2O3上的粒徑相差甚大,以含浸法承載的鈀,其粒徑約為10~11nm,以沉積沉澱法承載的金,其粒徑則小於5nm。觀察發現Au-Pd/Al2O3觸媒中的兩種金屬為獨立的aggregate 混合結構,小顆粒的Au圍繞在大顆粒的鈀周圍,金的價態為零價態,鈀則是二價態。鈀觸媒吸附CO的能力勝過金觸媒,鈀觸媒在室溫下雖然沒有CO氧化活性,但是仍具有吸附CO的能力,並將所吸附的CO利用溢流效應( spill-over effect)傳遞至金的周圍,以此方法幫助金觸媒提升其CO氧化能力。


    The adsorption and catalytic properties of catalyst can be used to improve to environment.Converting poisonous carbon monoxide to non-poisonous carbon dioxide is one of the most important catalyst applications. At room temperature,theactivity of gold catalysts for CO oxidation is much higher than that of traditional oxidative catalyst.Among the gold catalysts, Au/Al2O3 appears to receive much attention.In this study, an attempt was made to develop a catalyst that possessingbetter activity than Au / Al2O3 for CO oxidation. This goal is approached by adding Pd duringgold catalyst preparation, to promote the catalyst activity by synergetic effect of bimetallic catalysts.
    In order to understand the effect of Pd addition, the Pd was loaded on γ-Al2O3 by impregnation to product Pd/Al2O3. The Pd/Al2O3was then to prepare Au-Pd/Al2O3 via deposition precipitation. Two other catalysts, Au /Al2O3and Pd/Al2O3, were also prepared for comparison.
    Catalytic properties of the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy(ICP-AES), N2 adsorption (BET and pore size) , X-ray diffraction (XRD) , X-ray photoelectron spectroscopy (XPS) ,transmission electronic microscopy (TEM), and temperature programmed desorption of CO (CO-TPD).
    Activity of the catalysts was investigated by CO oxidation carried at 1 atm and 25oC. The reaction system consisted a micro-reactor made of pyrex glass. The reactant,500 ppm CO in 10%O2 balanced with He ,flowed throughthe reactor bed.The main variable in activity test was feed flow rate.
    The results showed that the surface area, average pore size and pore volume of the catalysts are mainly determined by the support, and are independent of the metal loading. The particle size of the gold and palladium on the catalyst varied significantly due mostly to the difference in the way of their preparation. The particle size of Pd on Pd/Al2O3 prepared by impregnation is about 10-11 nm. The size of Au on Au/Al2O3 prepared by deposition precipitation is less than 5 nm. Experimental results also reveal that the structure of the metals of the bimetal catalyst, Au-Pd/Al2O3, is aggregate mixture, with tiny Au particles surrounding largerPd particles. The valence state of Au in the catalyst is invariantly zero while that of Pdis two. The capability of CO adsorption of palladium is much greater than that of Au. Even though Pd/Al2O3shows no activity in CO oxidation at room temperature. The Pd in Au-Pd/Al2O3 catalyst can help absorb CO and spillover it to Au and, as a consequence, enhancing the catalyst’s activity.

    摘要 I Abstract III 圖目錄 VIII 表目錄 XI 第一章緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 3 2-1 金的基本性質 3 2-2 金觸媒發展史 3 2-3 金觸媒的製備方式 6 2-3-1 含浸法(Impregnation) 6 2-3-2 共沉澱法(Co-precipitation) 8 2-3-3 沉積沉澱法(Deposition-precipitation) 8 2-3-4 其他方法 12 2-4 金觸媒於擔體之活性及其CO氧化機制 16 2-4-1 氧化鋁擔體(γ-Al2O3)的基本性質 16 2-4-1 Au/γ-Al2O3觸媒以及其CO氧化機制 18 2-5 鈀的基本性質 23 2-6 鈀觸媒的應用 23 2-7 助促劑(Promoter)對觸媒活性之影響 25 2-8 雙金屬觸媒(Bimetallic catalysts) 26 第三章實驗 27 3.1實驗藥品、氣體、儀器與設備 27 3.1.1 實驗藥品 27 3.1.2 實驗氣體 28 3.1.3 實驗設備 28 3.1.4 實驗儀器 29 3.2 觸媒製備 30 3.2.1 γ-Al2O3擔體的前處理 30 3.2.2 Pd/Al2O3觸媒製備 30 3.2.3 Au/Al2O3觸媒製備 31 3.2.4 Au-Pd/Al2O3觸媒製備 32 3.2.5 金、鈀金屬負載量之分析 34 3.3 觸媒特性分析 34 3.3.1 感應耦合電漿原子放射光譜儀 34 3.3.2 氮氣等溫吸/脫附實驗 35 3.3.3 穿透式電子顯微鏡 39 3.3.4 粉末X-ray繞射儀 41 3.3.5 X-ray光電子能譜儀 43 3.3.6 程溫脫附(Temperature-Programmed-Desorption,TPD) 45 3.4 反應活性測試 48 3.4.1 前處理 48 3.4.2 CO氧化反應 48 第四章 結果與討論 52 4.1 觸媒特性鑑定 52 4.1.1 觸媒中金-鈀金屬負載量之鑑定 52 4.1.2 粉末X-ray繞射之鑑定 54 4.1.3 氮氣等溫吸脫附之鑑定 56 4.1.4 粉末X-ray電子能譜儀之鑑定 58 4.1.5 穿透式電子顯微鏡之分析 61 4.1.6 程溫脫附之分析 65 4.2 觸媒活性鑑定 67 第五章 結論 69 參考文獻 71

    [1] 董慕愷, 陳郁文, 奈米金觸媒科學發展,390期 (2005).
    [2] M. Haruta, CATTECH. 6 (2002) 102-115.
    [3] A.G. Sault, R.J. Madix, C.T. Campbell, Surface Science. 169 (1986) 347-356.
    [4] G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, Imperial College Press, 2006.
    [5] P. Buffat, J.P. Borel, Physical Review A. 13 (1976) 2287-2298.
    [6] G.C. Bond, P.A. Sermon, Gold Bull. 6 (1973) 102-105.
    [7] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Journal of Catalysis. 144 (1993) 175-192.
    [8] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, Journal of Catalysis. 115 (1989) 301-309.
    [9] M. Haruta, The Chemical Record. 3 (2003) 75-87.
    [10] E. Gaigneaux*, M. Devillers, S. Hermans, P.A. Jacobs, J. Martens, P. Ruiz, Scientific Bases for the Preparation of Heterogeneous Catalysts: Proceedings of the 10th International Symposium, Louvain-la-Neuve, Belgium, July 11-15, 2010, Elsevier Science, 2010.
    [11] H.-Y. Tsai, Y.-D. Lin, W.-T. Fu, S. Lin, Gold Bull. 40 (2007) 184-191.
    [12] W.-C. Li, M. Comotti, F. Schüth, Journal of Catalysis. 237 (2006) 190-196.
    [13] A. Schulz, M. Hargittai, Chemistry – A European Journal. 7 (2001) 3657-3670.
    [14] Y.A. Nechayev, G.V. Nikolenko, Geochem, Intl. 32 (1986) 23.
    [15] H.S. Oh, J.H. Yang, C.K. Costello, Y.M. Wang, S.R. Bare, H.H. Kung, M.C. Kung, Journal of Catalysis. 210 (2002) 375-386.
    [16] S.D. Lin, M. Bollinger, M.A. Vannice, Catal Lett. 17 (1993) 245-262.
    [17] 蔡欣諺, 元智大學化學工程與材料科學學系學位論文 (2005) 1-129.
    [18] S. Ivanova, V. Pitchon, C. Petit, H. Herschbach, A.V. Dorsselaer, E. Leize, Applied Catalysis A: General. 298 (2006) 203-210.
    [19] F. Moreau, G.C. Bond, A.O. Taylor, Journal of Catalysis. 231 (2005) 105-114.
    [20] S. Ivanova, C. Petit, V. Pitchon, Applied Catalysis A: General. 267 (2004) 191-201.
    [21] V. Ponec, G.C. Bond, Catalysis by metals and alloys, Elsevier, 1995.
    [22] M. Haruta, Gold Bull. 37 (2004) 27-36.
    [23] M. Haruta, Catalysis Today. 36 (1997) 153-166.
    [24] P.S. Santos, H.S. Santos, S.P. Toledo, Materials Research. 3 (2000) 104-114.
    [25] S. Cava, S.M. Tebcherani, I.A. Souza, S.A. Pianaro, C.A. Paskocimas, E. Longo, J.A. Varela, Materials Chemistry and Physics. 103 (2007) 394-399.
    [26] C. Liu, Y. Tan, S. Lin, H. Li, X. Wu, L. Li, Y. Pei, X.C. Zeng, Journal of the American Chemical Society. 135 (2013) 2583-2595.
    [27] H.H. Kung, M.C. Kung, C.K. Costello, Journal of Catalysis. 216 (2003) 425-432.
    [28] S. KUAN-CHENG, (2008).
    [29] N. Weiher, E. Bus, L. Delannoy, C. Louis, D.E. Ramaker, J.T. Miller, J.A. van Bokhoven, Journal of Catalysis. 240 (2006) 100-107.
    [30] J. Garcı́a-Serrano, A.G. Galindo, U. Pal, Solar Energy Materials and Solar Cells. 82 (2004) 291-298.
    [31] M.A.P. Dekkers, M.J. Lippits, B.E. Nieuwenhuys, Catalysis Today. 54 (1999) 381-390.
    [32] E.D. Park, J.S. Lee, Journal of Catalysis. 186 (1999) 1-11.
    [33] G.C. Bond, D.T. Thompson, Gold Bull. 33 (2000) 41-50.
    [34] G. Bond, D. Thompson, Gold Bull. 33 (2000) 41-50.
    [35] M.J.B. Evans, Canadian Journal of Chemistry. 52 (1974) 1200-1205.
    [36] S. Keesara, S. Parvathaneni, M.R. Mandapati, Tetrahedron Letters. 55 (2014) 6769-6772.
    [37] Y.S. Kumar, C. Dasaradhan, K. Prabakaran, P. Manivel, F.-R. Nawaz Khan, E.D. Jeong, E.H. Chung, Tetrahedron Letters. 56 (2015) 941-945.
    [38] R. Benhida, F. Lecubin, J.-L. Fourrey, L.R. Castellanos, L. Quintero, Tetrahedron Letters. 40 (1999) 5701-5703.
    [39] B.C. Ranu, R. Dey, K. Chattopadhyay, Tetrahedron Letters. 49 (2008) 3430-3432.
    [40] I. Jungwirthová, I. Stará, V. Matolín, Surface Science. 377–379 (1997) 644-649.
    [41] N. Tsud, V. Johánek, I. Stará, K. Veltruská, V. Matolı́n, Surface Science. 467 (2000) 169-176.
    [42] R.M. Lambert, G. Pacchioni, Chemisorption and Reactivity on Supported Clusters and Thin Films:: Towards an Understanding of Microscopic Processes in Catalysis, Springer Netherlands, 2013.
    [43] H. Conrad, G. Ertl, J. Koch, E.E. Latta, Surface Science. 43 (1974) 462-480.
    [44] N.M. Martin, M. Van den Bossche, H. Grönbeck, C. Hakanoglu, F. Zhang, T. Li, J. Gustafson, J.F. Weaver, E. Lundgren, The Journal of Physical Chemistry C. 118 (2014) 1118-1128.
    [45] S. Alayoglu, P. Zavalij, B. Eichhorn, Q. Wang, A.I. Frenkel, P. Chupas, Acs Nano. 3 (2009) 3127-3137.
    [46] Z. Suo, C. Ma, M. Jin, T. He, L. An, Catalysis Communications. 9 (2008) 2187-2190.
    [47] K. Qian, W. Huang, Catalysis Today. 164 (2011) 320-324.
    [48] B.E. Solsona, J.K. Edwards, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Chemistry of materials. 18 (2006) 2689-2695.
    [49] J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Journal of Catalysis. 236 (2005) 69-79.
    [50] A. Venezia, V. La Parola, B. Pawelec, J. Fierro, Applied Catalysis A: General. 264 (2004) 43-51.
    [51] S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, Journal of the American Chemical Society. 62 (1940) 1723-1732.
    [52] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry. 57 (1985) 603.
    [53] 蘇玠銓, 台灣科技大學化學工程學系學位論文 (2014) 1-90.
    [54] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catalysis Today. 41 (1998) 207-219.
    [55] A.M. Venezia, V. La Parola, G. Deganello, B. Pawelec, J.L.G. Fierro, Journal of Catalysis. 215 (2003) 317-325.
    [56] E. Smolentseva, B.T. Kusema, S. Beloshapkin, M. Estrada, E. Vargas, D.Y. Murzin, F. Castillon, S. Fuentes, A. Simakov, Applied Catalysis A: General. 392 (2011) 69-79.

    QR CODE