簡易檢索 / 詳目顯示

研究生: 施淳仁
Chun-Jen - Shih
論文名稱: 室溫濺鍍氧化銦錫電極於激發複合物摻雜綠色磷光系統之高效率有機發光二極體應用
Highly efficient exciplex organic light-emitting diodes with a sputtered indium-tin oxide electrode
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 室溫濺鍍氧化銦錫激發複合體元件壽命有機發光二極體
外文關鍵詞: Sputter ITO, exciplex, device lifetime, Organic Light-Emitting Diodes
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以室溫濺鍍氧化銦錫基板為主軸,利用激發複合體摻雜磷光材料放光 之機制,以評估其在有機發光二極體之應用。


    This thesis focused on the application of sputter process ITO substrate in room temperature. The evaluation of the substrate was based on exciplex organic light-emitting diodes with phosphorescence light-emitting material.

    中文摘要 i ABSTRACT ii 誌 謝 iii 總目錄 iv 圖目錄 vii 表目錄 x Chapter 1 緒論 1 1.1 前言 1 1.2 有機發光二極體發展歷史 2 Chapter 2 理論基礎 4 2.1 有機電致發光原理 4 2.2 激發複合物 7 2.3 外部放光路徑 8 2.4 有機發光二極體元件 9 2.4.1 注入能障 9 2.4.2 傳輸行為 10 2.4.3 載子複合 10 2.4.4 出光特性 11 2.4.5 元件劣化因子 12 2.5 透明導電氧化薄膜 13 2.6 單位定義 14 Chapter 3 文獻探討 16 3.1 表面特性處理 16 3.2 激發複合物 17 3.3 放光材料應用 19 3.4 元件出光應用 21 Chapter 4 實驗程序 24 4.1製程設備 24 4.1.1超音波清洗機 (Ultrasonic Cleaner) 24 4.1.2旋轉塗佈機 (Spin Coater) 24 4.1.3曝光機紫外光曝光機 (UV Exposure) 25 4.1.4氮氣循環手套箱 (Glove Box) 25 4.1.5氧電漿清洗機(O2 plasma) 26 4.1.6真空熱蒸鍍系統 (Thermal Evaporator) 27 4.1.7材料純化系統 (sublimation system) 29 4.1.8真空濺鍍機 (sputter system) 30 4.2量測設備 31 4.2.1探針式膜厚量測儀 (α-step) 31 4.2.2橢圓偏振儀 32 4.2.3分光式輝度計 32 4.2.4原子力顯微鏡 33 4.2.5光電子光譜儀 34 4.2.6紫外光-可見光光譜儀 35 4.2.7積分球 36 4.2.8螢光光譜儀 37 4.3材料介紹 38 4.3.1陽極材料 (anode) 38 4.3.2電洞注入材料 (hole injection material) 39 4.3.3電洞傳輸材料 (hole transporting material) 40 4.3.4電子傳輸材料 (electron transporting material) 40 4.3.5激發複合體材料 (exciplex-forming material) 41 4.3.6磷光材料 (phosphorescence material) 42 4.3.7電子注入材料 (electron injection material) 43 4.3.8陰極材料 (cathode) 43 4.4實驗步驟 44 4.4.1基板準備 44 4.4.2黃光微影製程 45 4.4.3基板前清洗 47 4.4.4熱蒸鍍製程 48 4.4.5元件封裝 49 Chapter 5 結果與討論 50 5.1 薄膜特性 50 5.2 元件特性 55 Chapter 6 總結 61 Chapter 7 參考文獻 62

    [1]J. J. Lih, C. F. Sung, M. S. Weaver, M. Hack and J. J. Brown, “4.3: A Phosphorescent Active-Matrix OLED Display Driven by Amorphous Silicon Backplane,” SID Symposium Digest of Technical Papers, 34, 14 (2003).
    [2]J.-J. Lih and C.-F. Sung, “Full-color active-matrix OLED based on a-Si TFT technology,” Journal of the Society for Information Display, 11, 617 (2003).
    [3]M. Kashiwabara, K. Hanawa, R. Asaki, I. Kobori, R. Matsuura, H. Yamada, T. Yamamoto, A. Ozawa, Y. Sato, S. Terada, J. Yamada, T. Sasaoka, S. Tamura and T. Urabe, “29.5L: Late-News Paper: Advanced AM-OLED Display Based on White Emitter with Microcavity Structure,” SID Symposium Digest of Technical Papers, 35, 1017 (2004).
    [4]G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich and J. Salbeck, “High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers,” Applied Physics Letters, 85, 3911 (2004).
    [5]T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura and T. Urabe, “24.4L: Late-News Paper: A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC),” SID Symposium Digest of Technical Papers, 32, 384 (2001).
    [6]Z. Y. Xie and L. S. Hung, “High-contrast organic light-emitting diodes, ” Appl. Phys. Lett., 84, 1207 (2004).
    [7]H. Sasabe, N. Toyota, H. Nakanishi, T. Ishizaka, Y. J. Pu and J. Kido,
    “3,3'-Bicarbazole-based host materials for high-efficiency blue phosphorescent
    OLEDs with extremely low driving voltage,” Adv. Mater., 24, 3212-7 (2012).
    [8]P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” Ieee Transactions on Electron Devices, 44, 1188 (1997).
    [9]A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Applied Physics Letters, 83, 413 (2003).
    [10]Y.-J. Tung, T. Ngo, M. Hack, J. Brown, N. Koide, Y. Nagara, et al.,“5.2: A High Efficiency Phosphorescent White OLED for LCD Backlight and Display Applications,” SID Symposium Digest of Technical Papers, 35, 48 (2004).
    [11]M. Pope, H. P. Kallmann, and P. Magnante,“Electroluminescence in Organic Crystals,” The Journal of Chemical Physics, 38, 2042 (1963).
    [12]C. W. Tang and S. A. VanSlyke,“Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
    [13]Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature, 440, 908 (2006).
    [14]K. T. Wong, “Highly efficient organic light-emitting diodes based on an exciplex,” SPIE, 10.1117/2.1201512.006265 (2015).
    [15]T. Ishida, H. Kobayashi and Y. Nakato, “Structures and properties of electron‐ beam‐evaporated indium tin oxide films as studied by x‐ray photoelectron spectroscopy and work ‐ function measurements,” J. Appl. Phys., 73, 4344 (1993).
    [16]J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, “Indium–tin oxide treatments for single- and double- layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance,” J. Appl. Phys., 84, 6859 (1998).
    [17]S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, “Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices,” Appl. Phys. A, 68, 447 (1999).
    [18]P. R. Huang, Y. He, C. Cao and Z. H. Lu, “The origin of the high work function of chlorinated indium tin oxide,” NPG Asia Materials, 5, e57 (2013)
    [19]C. N. Li, C. Y. Kwong, A. B. Djuris, P. T. Lai, P. C. Chui, W.K. Chan and S.Y. Liu, “Improved performance of OLEDs with ITO surface treatments,” Thin Solid Films, 477, 57 (2005)
    [20]J. A. Jeong, K. H. Choi, J. H. Bae, J. M. Moon, S. W. Jeong, I. Kim, H.K. Kim and M.S. Yi, “Electrical, optical, and structural properties of ITO co-sputtered IZO films by dual target magnetron sputtering, “J Electroceram, 23, 361 (2009).
    [21]S. H. Rhee, K. B. Nam, C. S. Kim and S. Y. Ryu, “Control of the Color Coordinates of Blue Phosphorescent Organic Light-Emitting Diodes by Emission Zone,” ECS Solid State Letters, 3, R7-R10 (2014).
    [22]C. M. Hsu, J. W. Lee, T. H. Meen and W. T. Wu, “Preparation and characterization of Ni–indium tin oxide co-sputtered thin films for organic light-emitting diode application,” Thin Solid Films, 474, 19 (2009).
    [23]H. K. Kim, “High-performance phosphorescent organic light-emitting diodes prepared using an amorphous indium zinc oxide anode film grown by box cathode sputtering,” Surface & Coatings Technology, 203, 652 (2008).
    [24]Z. L. Tsenga, P. C. Kaoc, C. S. Yanga, Y. D. Juangd and S. Y Chua, “Transparent Al-doped ZnO anodes in organic light-emitting diodes investigated using a hole-only device,” Applied Surface Science, 261, 360 (2012).
    [25]S. C. Gonga, J. G. Janga, H. J. Changa and J. S. Park, “The characteristics of organic light emitting diodes with Al doped zinc oxide grown by atomic layer deposition as a transparent conductive anode,” Synthetic Metals, 161, 823 (2011).
    [26]T. Jung, S. Kim and P. Song, “Characteristics of amorphous Yb-doped ITO films deposited on polyimide substrate by DC magnetron sputtering,” Surface & Coatings Technology, 205, S318 (2010).
    [27]K. L. Chopra, S. Major and D. K. Pandya, “TRANSPARENT CONDUCTORS--A STATUS REVIEW,” Thin Solid Films, 102, 1 (1983).
    [28]S. Seki, M. Wakana, Y. Kasahara, Y. Seki, T. K., M. Wang, T. Uchida, K. Haga and Y. Sawada, “Fabrication of Organic Light-Emitting Devices with Indium– Tin-Oxide Anode Prepared by Spray Chemical Vapor Deposition,” J. J. Appl. Phys., 46, 6837 (2007).
    [29]D. Vaufrey, M. B. Khalifa1, M.P. Besland, C. Sandu, M.G. Blanchin, V. Teodorescu, J. A. Roger and J. Tardy, “Sol gel deposited Sb doped 5n02 as transparent anode for OLED: process, patterning and hole injection
    characteristics,” SPIE, 4466, (2002).
    [30]H.J. Choi, S.G. Yoon, J. H. Lee and J.Y. Lee, “Crystallized Indium-Tin Oxide (ITO) Thin Films Grown at Low Temperature onto Flexible Polymer Substrates,” ECS Journal of Solid State Science and Technology, 1, 5 (2012).
    [31]R. Teghil, D. Ferro, A. Galasso, A. Giardini, V. Marotta,G.P. Parisi, A. Santagata and P. Villani, “Femtosecond pulsed laser deposition of nanostructured ITO thin films,” Materials Science and Engineering C, 27, 1034 (2007).
    [32]M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu and Z. H. Lu, “Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility,” SCIENCE, 332 (2011).
    [33]Y.S. Park , S. Lee , K.H. Kim , S.Y. Kim , J.H. Lee and J.J. Kim, “Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency,” Adv. Funct. Mater., 23, 4914 (2013).
    [34]Y. S. Park, W.I. Jeong and J. J. Kim, “Energy transfer from exciplexe to dopants and its effect on efficiency of organic light-emitting diodes,” J. Appl. Phys., 110, 1245194 (2011).
    [35]S. Lee, D. Limbach, K.H. Kim, S.J. Yoo, Y.S. Park and J. J. Kim, “High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers,” Org. Electron., 14, 1856 (2013).
    [36]H. Shin , S. Lee , K. H. Kim , C. K. Moon , S. J. Yoo , J. H. Lee and J. J Kim, “Blue Phosphorescent Organic Light-Emitting Diodes Using an Exciplex Forming Co-host with the External Quantum Efficiency of Theoretical Limit,” Adv. Mater., 26, 4730 (2014).
    [37]J. H. Lee , S. H. Cheng , S. J. Yoo , H. Shin , J. H. Chang, C. I Wu , K. T. Wong and J. J. Kim, “An Exciplex Forming Host for Highly Efficient Blue Organic Light Emitting Diodes with Low Driving Voltage,” Adv. Funct. Mater., 10, 1002 (2015).
    [38]C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048 (2001).
    [39]H. F. Chen, S. J. Yang, Z. H. Tsai, W.Y. Hung, T.C. Wang and K. T. Wong, “1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,” J. Mater. Chem., 19, 8112 (2009).
    [40]Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo and M. T. Greiner, “Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000cd/m2,” Appl. Phys. Lett. 98, 073310 (2011).
    [41]P. Liehm, C. Murawski, M. Furno, B. Lüssem, K. Leo, M. C. Gather, “Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes,” Appl. Phys. Lett., 101, 253304 (2012).
    [42]C. L. Mulder, K. Celebi, K. M. Milaninia and M. A. Baldo, “Out-coupling Enhancement of OLEDs With a Randomly Distributed ITO Pattern Fabricated by Maskless Wet Etching Method,” Appl. Phys. Lett., 90, 211109 (2007).
    [43]J. H. Jang and M. C. Oh, “Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission,” Journal of Display Technology, 9, 11 (2013).
    [44]Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett., 97, 093110 (2010).
    [45]Y. Luo, C. Wang, L. Wang, Y. Ding, L. Li, B. Wei and J. Zhang, “Flexible Organic Light-Emitting Diodes with Enhanced Light Out-Coupling Efficiency Fabricated on a Double-Sided Nano-textured Substrate,” Appl. Mater. Interfaces, 6, 10213 (2014).
    [46]S. M. and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered micro-lens arrays,” J. Appl. Phys., 91, 5 (2002).
    [47]C. F. Madigan, M. H. Lu and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett., 76, 1650 (2000).
    [48]G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh and S. R. Forrest, “High external quantum efficiency organic light-emitting devices,” OPTICS LETTERS, 22, 6 (1997).
    [49]C. Y. Cheng, C. W. Wang, J. R. Cheng, H. F. Chen, Y. S. Yeh, H.C. Su, C. H. Chang and K. T. Wong, “Enhancing device efficiencies of solid-state white light-emitting electrochemical cells by employing waveguide coupling,” J. Mater. Chem. C, 3, 5665 (2015).
    [50]Y. H. Huang, C. Y. Lu, S. T. Tsai, Y. T. Tsai, C. Y. Chen, W. L. Tsai, C. Y. Lin, H. W. Chang, W. K. Lee, M. Jiao and C.C. Wu, “Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes,” Appl. Phys. Lett., 104, 183302 (2014).
    [51]T. Nakamura, N. Tsutsumi, N. Juni and H. Fujii, “Thin-film wave guiding mode light extraction in organic electroluminescent device using high refractive index substrate,” J. Appl. Phys., 97, 054505 (2005).
    [52]C. L. Lin, T. Y. Cho, C. H. Chang and C. C. Wu, “Enhancing light out-coupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett., 88, 081114 (2006).
    [53]M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys., 91, 595 (2002).
    [54]P. He, S. D. Wang, W. K. Wong, L. F. Cheng, C. S. Lee and S. T. Lee, “Vibrational analysis of oxygen-plasma treated indium tin oxide,” Chem. Phys. Lett., 370, 795 (2003).
    [55]Z. B. Deng, X. M. Ding, S. T. Lee and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers,” Appl. Phys. Lett., 74, 2227 (1999).
    [56]J. M. Zhao, S. T. Zhang, X. J. Wang, Y. Q. Zhan, X. Z. Wang and G. Y.Zhong, “Dual role of LiF as a hole-injection buffer in organic light-emitting diodes,” Appl. Phys. Lett., 84, 2913 (2004).
    [57]Y. Qiu, Y. Gao, L. Wang and D. Zhang, “Efficient light emitting diodes with Teflon buffer layer,” Synthetic Metals, 130, 235 (2002).
    [58]H. You, Y. Dai, Z. Zhang and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys., 101, 026105 (2007).
    [59]Y. K. Kim, J. W. Kim and Y. Park, “Energy level alignment at a charge generation interface between 4 , 4 ′ -bis( N -phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile,” Appl. Phys. Lett., 94, 063305 (2009).
    [60]Y. L. Wu, C. Y. Chen, Y. H. Huang, Y. J. Lu, C. H. Chou and C. C. Wu, “Highly
    efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer,” APPLIED OPTICS, 53, 22 (2014).
    [61]C. W. Tang, S. A. VanSlyke and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys., 65, 3610 (1989).
    [62]H. F. Chen, T. C. Wang, S. W. Lin, W. Y. Hung, H. C. Dai, H. C. Chiu, K. T. Wong, M.H. Ho, T.Y. Cho, C.W. Chen and C.-C. Lee, “Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electro-phosphorescent devices,” J. Mater. Chem., 22, 15620 (2012).
    [63]S. J. Su, T. Chiba, T. Takeda and J. Kido, “Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs,” Adv. Mater., 20, 2125 (2008)
    [64]S.-J. Su, Y. Takahashi, T. Chiba, T. Takeda, and J. Kido, ”Structure-Property Relationship of Pyridine-Containing Triphenyl Benzene Electron-Transport Materials for Highly Efficient Blue Phosphorescent OLEDs,” Advanced Functional Materials, 19, 1260 (2009).
    [65]D. F. O’Brien, M. A. Baldo, M. E. Thompson and S. R. Forrest, “Improved energy transfer in electro-phosphorescent devices,” App. Phys. Lett., 74, 442 (1999).
    [66]C. Adachi, T. Tsutsui and S. Saito, “Organic electroluminescent device having a hole conductor as an emitting layer,” Appl. Phys. Lett., 55, 1489 (1989).
    [67]J. Shi, C. W. Tang and C. H. Chen, U.S. Patent 5646948 (1997).
    [68]F. S. Steinbacher, R. Krause, A. Hunze and A. Winnacker, “Simplified, yellow,
    organic light emitting diode by co-evaporation of premixed dye molecules,” Org.
    Electron., 12, 911 (2011).
    [69]R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li and M. E. Thompson,
    “Efficient, deep-blue organic electro-phosphorescence by guest charge trapping,”
    Appl. Phys. Lett., 83, 3818 (2003).
    [70]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest,
    “Very high-efficiency green organic light-emitting devices based on
    electrophosphorescence,” Appl. Phys. Lett., 75, 4 (1999).
    [71]K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi and K. Shibata, “High
    efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer,” Appl. Phys. Lett., 89, 13502, (2006).
    [72]S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen and N. Peyghambarian, “Bright blue organic light-emitting diode with improved color
    purity using a LiF/Al cathode,” J. Appl. Phys., 84, 2324 (1998).
    [73]H. Sasabe, D. Tanaka, D. Yokoyama, T. Chiba, Y. J. Pu, K. Nakayama, M.
    Yokoyama and J. Kido, “Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters,” Adv. Funct. Mater., 21, 336 (2011).
    [74]W. Y. Hung, G. C. Fang, Y. C Chang, T.Y. Kuo, P. T. Chou, S. W. Lin and K.T. Wong, “Highly Efficient Bilayer Interface Exciplex For Yellow Organic Light-Emitting Diode,” ACS Appl. Mater. Interfaces, 5, 6826 (2013).

    QR CODE