簡易檢索 / 詳目顯示

研究生: 陳佑鳴
Yu-Ming Chen
論文名稱: 具電流控制之四相開關型磁阻電動機驅動系統設計
Design of Current Controlled Four-phase Switched Reluctance Motor Drives
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
蕭弘清
Horng-Ching Hsiao
王順源
Shun-Yuan Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 開關磁阻電動機電流閉迴路單相及兩相混合激磁
外文關鍵詞: switched reluctance motor, close-loop control strategy of current, hybrid excitation of one-phase and two-phase
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本文旨在研製四相開關型磁阻電動機驅動系統。開關型磁組電動機採用定子8極、轉子6極之結構,其驅動系統利用霍爾偵測元件回授之信號,配合12極磁環進行轉子位置偵測,作為上、下臂分相之判斷,數位信號處理器亦根據此回授之信號作轉速之估測。此外,文中使用電流偵測器提供回授電流至數位信號處理器。功率驅動器方面採用兩組型之架構,每兩相為一組,可作單相及兩相混合激磁控制,對兩相同時激磁時間做調整,以提升效率。本系統之轉速閉迴路控制,兼具降低轉矩漣波及改善運轉噪音之效。

  本文以16位元數位信號處理器dsPIC30F4011為控制核心,所有控制皆由軟體完成,可減少硬體成本,並增加系統可靠度。本系統之直流鏈輸入電壓為30V,轉速為500~2000rpm,轉矩為0.30 N-m~0.47 N-m,輸出功率為16W~101W,整體效率為31%~59%。加入電流閉迴路後,轉矩漣波降低23%,運轉噪音減少2~4dB。以上之數據驗證了本文控制策略的可行性。


This thesis presents the design of a four-phase switched reluctance motor drive system. The switched reluctance motor consists of an 8-pole stator and a 6-pole rotor. As for the motor drive system, Hall effect sensors are used to detect the required rotor positions for determining the appropriate phase to be excited. In addition, the signals generated from the Hall effect sensors can be transmitted to the digital signal processor for estimating the rotational speed of the motor. Moreover, current sensors are used to detect phase current variations and then transmit to the digital signal processor for further calculation. The two-group topology of the power stage is used so that the hybrid excitation, where single-phase and two-phase are excited alternately over a certain period, can be administered for efficiency improvement. The proposed current control strategy can also reduce torque ripple and noise.

In this thesis, a 16-bit digital signal processor, dsPIC30F4011, is adopted as the control core. The system is controlled by software so that the cost of hardware can be reduced and the reliability can be enhanced. The input dc-bus voltage of the system is 30V. The rotational speed of the motor ranges from 500 rpm to 2000 rpm. The corresponding torque varies from 0.30 N-m to 0.47 N-m. The output power is from 16W to 101W. The overall efficiency ranges from 31% to 59%. Both 23% reduction in the torque ripple and 2dB to 4dB reduction in the noise generated from the motor operation have been obtained after introducing the control method. The proposed control strategy has been verified experimentally.

中文摘要 I 英文摘要 II 誌  謝 III 目  錄 IV 符號索引 VI 圖表索引 VIII 第一章 緒論 1 1.1 動機及目的 1 1.2 文獻探討 2 1.3 本文架構與特色 4 1.4 本文大綱 4 第二章 開關型磁阻電動機 6 2.1 前言 6 2.2 開關型磁阻電動機動作原理 6 2.3 四相開關型磁阻電動機的結構及磁路分析 8 2.3.1 結構 8 2.2.2 磁路分析 9 2.4 四相開關型磁阻電動機等效數學模式 11 2.3.1 電壓及磁通鏈方程式 11 2.3.2  轉矩方程式 13 2.5 結語 13 第三章 四相開關型磁阻電動機之控制 14 3.1 前言 14 3.2 四相開關型磁阻電動機控制 14 3.2.1 轉子位置偵測裝置 14 3.2.2 單相激磁控制策略 15 3.2.3 單相及兩相混合激磁控制策略 17 3.2.4 轉速閉迴路控制策略 19 3.2.5 具電流閉迴路之轉速閉迴路控制策略 20 3.3 結語 22 第四章 四相開關型磁阻電動機實體製作及實測 23 4.1 前言 23 4.2 硬體規劃與實作 23 4.2.1 開關型磁阻數位信號處理器之介面電路 23 4.2.3 直流鏈電壓回授電路 24 4.2.4 電流回授電路 25 4.2.6 閘極驅動電路 26 4.3 控制軟體程式規畫 27 4.4 實測 31 4.4.1 轉速閉迴路實測結果 32 4.4.2 電流閉迴路實測結果 37 4.5 結語 41 第五章 結論與建議 42 5.1 結論 42 5.2 建議 42 參考文獻 43 附錄A 47

[1] 王順泰,數位控制之開關式磁阻馬達驅動系統研製,國立台灣科技大學電機工程學研究所碩士論文,民國九十一年。
[2] 柯柏年,單相昇壓型交流-直流功率轉換器之開關型磁阻電動機驅動系統研製,國立台灣科技大學電機工程學研究所碩士論文,民國九十四年。
[3] 王淳正,開關型磁阻電動機驅動系統設計,國立台灣科技大學電機工程學研究所碩士論文,民國一百零一年。
[4] R. Krishnan and P. Materu, “Measurement and instrumentation of a switched reluctance motor,” IEEE IAS’89, vol. 1, pp. 116-121, 1989.
[5] 張家銘,開關式磁阻馬達的設計與特性分析,逢甲大學電機工程學研究所碩士論文,民國九十三年。
[6] R. M. Davis, “Variable reluctance rotor structures-their influence on torque production,” IEEE Transactions on Industrial Electronics, vol. 39, no. 2, pp. 168-174, 1992.
[7] M. Moallem, C. M. Ong and L. E. Unnewehr, “Effect of rotor profiles on the torque of a switch reluctance motor,” IEEE IAS’90, vol. 28, no. 2, pp. 247-253, 1990.
[8] H. C. Lovatt and J. M. Stephenson, “Influence of number of poles per phase in switched reluctance motors,” IEE Proceedings-Electric Power Applications, vol. 139, no. 4, pp. 307-314, 1992.
[9] R. Robinovici, “Scaling of switched reluctance motors,” IEE Proceedings-Electric Power Applications, vol. 142, no. 1, pp. 1-4, 1995.
[10] B. C. Mecrow, “New winding configurations for doubly salient reluctance machines,” IEEE IAS, vol. 32, no. 6, pp. 1348-1356, 1996.
[11] J. Li, H. X. Sun, Y. Liu ,“New rotor structure mitigating vibration and noise in switched reluctance motor,” International Conference on Information, Networking and Automation, vol. 2, pp.80 -84, 2010
[12] J. M. Stephenson and M. A. El-Khazendar, “Saturation in doubly salient reluctance motors,” IEE Proceedings-Electric Power Applications, vol. 136, no. 1, pp. 50-58, 1989.
[13] A. M. Michaelides and C. Pollock, “Effect of end core flux on the performance of the switched reluctance motor,” IEE Proceedings-Electric Power Applications, vol. 141, no. 6, pp. 308-316, 1994.
[14] R. Krishnan, R. Arumugam and J. F. Lindsay, “Design procedure for switched-reluctance motors,” IEEE Transactions on Industry Applications, vol. 24, no. 3, pp. 456-461, 1988.
[15] R. Krishnan and R. A. Bedingfield, “Dynamic analysis of an SRM drive system,” IEEE IAS’91, vol. 1, pp. 265-271, 1991.
[16] G. E. Dawson, A. R. Eastham and J. Mizia, “Switched-reluctance motor torque characteristics : finite-element analysis and test results,” IEEE Transactions on Industry Applications, vol. 23, no. 3, pp. 532-537, 1987.
[17] M. Ehsani, I. Husdin, K. R. Ramini and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 224-230, 1993.
[18] J. Kim, K. Ha, R. Krishnan “sigle-controllable-switch-based switched reluctance motor drive for low cost variable-speed applications,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp 379 - 387, 2012.
[19] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 222-228, 1990.
[20] M. Ehsani, I. Husdin, K. R. Ramini and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 224-230, 1993.
[21] R. Krishnan and P.N. Materu, “Design of a single-switched-per-phase converter for switched reluctance motor drives,” IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 469-476, 1990.
[22] S. Chan and H. R. Bolton, “Performance enhancement of single phase switched-reluctance motor by dc link voltage boosting,” IEE Proceedings-Electric Power Applications, vol. 140. no. 5, pp. 912-921, 1997.
[23] M. Asgar, E. Afjei, A. Siadatan, Ali Zakerolhosseini, “A New modified Asymmetric Bridge Drive Circuit Switched Reluctance Motor,” Circuit Theory and Design, 2009. ECCTD 2009. European Conference on, pp. 539 - 542, 2009.
[24] Z. Zhuo, P. Zhaoyu, F. Guojie, “Research on new control model for switched reluctance motor,” International Conference on Computer Application and System Modeling, vol. 5, pp. 198 -202, 2010.
[25] W. Mianhua, “Four phase switched reluctance motor direct torque control,” Third International Conference on Measuring Technology and Mechatronics Automation, vol. 2, pp. 251- 254, 2011.
[26] S. Bolognani and M. Zigliotto, “Fuzzy logic control of a switched reluctance motor drive,” IEEE Transactions on Industry Applications, vol. 32, no. 5, pp. 1063-1068, 1996.
[27] D. S. Reay, M. Mirkazemi-Moud, T. C. Green and B. W. Williams, “Switched reluctance motor control via fuzzy adaptive systems,” IEEE Control Systems Magazine, vol. 15, no. 3, pp. 8-15, 1995.
[28] H. C. Lovatt and J. M. Stephenson, “Computer-optimised current waveforms for switched-reluctance motors,” IEE Proceedings- Electric Power Applications, vol. 141, no. 2, pp. 45-51, 1994.
[29] I. Husain and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 83-88, 1996.
[30] R. S. Wallace and D. G. Taylor, “A balance commutator for switched reluctance motors to reduce torque ripple,” IEEE Transactions on Power Electronics, vol. 7, no. 4, pp. 617-626, 1992.
[31] N. Matsui, N. Akao and T. Wakino, “High-precision torque control of reluctance motors,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 902-907, 1991.
[32] A. M. Michaelides and C. Pollock, “Modeling and design of switched reluctance motors with two phases simultaneously excited,” IEE Proceedings- Electric Power Applications, vol. 143, no. 5, pp. 361-370, 1996.
[33] I. Husain and M. Ehsani, “Rotor position sensing in switched reluctance motor drives by measuring mutually induced voltages,” IEEE Transactions on Industry Applications, vol. 30, no. 3, pp. 665-672, 1994.
[34]X. Kai, Z. Qionghua, L. Jianwu, “A new simple sensorless control method for switched reluctance motor drives,” International Conference on Electrical Machines and Systems, vol. 1, pp. 594-598 ,2005.
[35] A. Lumsdaine and J. H. Lang, “State observers for variable-reluctance motors,” IEEE Transactions on Industrial Electronics, vol. 37, no. 2, pp. 133-142, 1990.
[36] M. Ehsani and K. R. Ramini, “Direct control strategies based on sensing inductance in switched reluctance motors,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 74-82, 1996

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE