簡易檢索 / 詳目顯示

研究生: 宋承軒
Cheng-Xuan Song
論文名稱: 開關式磁阻電動機驅動系統的性能改善研究
Research on Performance-Improvement for Switched Reluctance Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
none
劉益華
Yi-Hua Liu
陳德發
none
廖聰明
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 103
中文關鍵詞: 數位信號處理器脈動轉矩功因校正開關式磁阻電動機
外文關鍵詞: digital signal processor, torque pulsation, power factor correction, switched reluctance motor
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討開關式磁阻電動機的性能改善研究,主要可分為提高功因與降低脈動轉矩兩大部份。文中,首先介紹開關式磁阻電動機的結構、原理及數學模式,接著說明含功因校正的功率轉換電路與操作模式,最後探討本文的兩種降低脈動轉矩方法,並藉由降低脈動轉矩,抑制漣波轉速與振動。
    本文所研製的開關式磁阻電動機驅動系統,是以數位訊號處理器TMS-320-LF2407A晶片為控制核心,完成閉迴路速度控制及相關的改善策略,並由實測結果驗證本文所提的方法確實可行。


    This thesis investigates the performance-improvement for switched reluctance motor drive systems, including power factor correction and torque pulsation reduction. First, the structure, principle, and mathematical model of the switched reluctance motor are described. Next, the power converter including power factor correction circuit and its operating modes are analyzed. After that, two methods of reducing torque pulsation, speed ripple, and vibration are proposed.
    A digital signal processor, TMS-320-LF2407A, is used as the control center to achieve the closed-loop control system and its related performance-improvement strategies. Experimental results can verify the correctness and feasibility of the proposed drive system.

    中文摘要I 英文摘要II 目錄III 圖目錄V 表目錄IX 符號索引X 第一章 緒論1 1.1 研究動機1 1.2 文獻回顧2 1.3 目的4 1.4 大綱6 第二章 開關式磁阻電動機7 2.1 簡介7 2.2 結構7 2.3 數學模式11 2.4 驅動原理15 第三章 開關式磁阻電動機驅動系統17 3.1 簡介17 3.2 功率轉換器18 3.3 轉矩控制19 3.4 四象限控制20 第四章 具功因校正的功率轉換器23 4.1 簡介23 4.2 功率因數簡介24 4.3 改良型功率轉換器電路與操作模式28 4.4 改良型功率轉換器切換狀態分析35 第五章 脈動轉矩的改善策略38 5.1 簡介38 5.2 轉矩分配函數38 5.3 導通角與截止角的調整43 5.4 降低脈動轉矩方法的優劣分析46 第六章 系統研製47 6.1 簡介47 6.2 硬體電路製作49 6.2.1 功率轉換器電路49 6.2.2 光耦合隔離電路51 6.2.3 過電流保護電路52 6.2.4 電壓與電流偵測電路53 6.2.5 類比/數位轉換電路55 6.3 數位信號處理器56 6.4 軟體程式設計57 第七章 實測結果64 7.1 簡介64 7.2 實測結果64 第八章 結論與建議95 參考文獻96 作者簡介103

    [1]G. Mirzaeva, R. E. Betz, and T. J. Summers, “Evaluation of current density in DC motor brushes for mining machines based on air gap field measurement,” IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1255-1263, July/August 2010.
    [2]Z. Lin, D. Reay, B. Williams, and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEE Electric Power Applications, vol. 4, no. 1, pp. 67-74, January 2010.
    [3]M. Comanescu and L. Xu, “An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 50-56, February 2006.
    [4]A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 1531-1537, July 2007.
    [5]T. H. Liu and H. H. Hsu, “Adaptive controller design for a synchronous reluctance motor drive system with direct torque control,” IEE Electric Power Applications, vol. 1, no. 5, pp. 815-824, September 2007.
    [6]K. Liu, P. O. Rasmussen, S. J. Watkins, and F. Blaabjerg, “A new low-cost hybrid switched reluctance motor for adjustable-speed pump applications,” IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 314-211, January/February 2011.
    [7]S. Wang, Q. Zhan, Z. Ma, and L. Zhou, “Implementation of a 50-kW four-phase switched reluctance motor drive system for hybrid electric vehicle,” IEEE Transactions on Magnetics, vol. 41, no. 1, pp. 501-504, January 2005.
    [8]X. D. Xue, K. W. E. Cheng, J. K. Lin, Z. Zhang, K. F. Luk, T. W. Ng, and N. C. Cheung, “Optimal control method of motoring operation for SRM drives in electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1191-1204, March 2010.
    [9]Y. Kano, T. Kosaka, and N. Matsui, “Optimum design approach for a two-phase switched reluctance compressor drive,” IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 955-964, May/June 2010.
    [10]S. H. Mao and M. C. Tsai, “A novel switched reluctance motor with C-core stators,” IEEE Transactions on Magnetics, vol. 41, no. 12, pp. 4413-4420, December 2005.
    [11]C. Lee, R. Krishnan, and N. S. Lobo, “Novel two-phase switched reluctance machine using common-pole E-core structure: concept, analysis, and experimental verification,” IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 703-711, March/April 2009.
    [12]Y. K. Choi, H. S. Yoon, and C. S. Koh, “Pole-shape optimization of a switched-reluctance motor for torque ripple reduction,” IEEE Transactions on Magnetics, vol. 43, no. 4, pp. 1797-1800, April 2007.
    [13]P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles concept to implementation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 649-659, February 2010.
    [14]P. Zhang, P. A. Cassani, and S. S. Williamson, “An accurate inductance profile measurement technique for switched reluctance machines,” IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 2972-2979, September 2010.
    [15]O. Ustun, “Measurement and real-time modeling of inductance and flux linkage in switched reluctance motors,” IEEE Transactions on Magnetics, vol. 45, no. 12, pp. 5376-5382, December 2009.
    [16]J. Faiz, B. Ganji, C. E. Carstensen, K. A. Kasper, and R. W. D. Doncker, “Temperature rise analysis of switched reluctance motors due to electromagnetic losses,” IEEE Transactions on Magnetics, vol. 45, no. 7, pp. 2927-2934, July 2009
    [17]J. Liang, D. H. Lee, G. Xu, and J. W. Ahn, “Analysis of passive boost power converter for three-phase SR drive,” IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 2961-2971, September 2010.
    [18]A. K. Jain and N. Mohan, “SRM power converter for operation with high demagnetization voltage,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1224-1231, September/October 2005.
    [19]J. Liang, D. H. Lee, and J. W. Ahn, “Direct instantaneous torque control of switched reluctance machines using 4-level converters,” IEE Electric Power Applications, vol. 3, no. 4, pp. 313-323, July 2009.
    [20]N. H. Fuengwarodsakul, M. Menne, R. B. Inderka, and R. W. D. Doncker, “High-dynamic four-quadrant switched reluctance drive based on DITC,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1232-1242, September/October 2005.
    [21]X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives,” IEEE Transactions on Power Electronics, vol. 24, no. 9, pp. 2076-2090, September 2009.
    [22]Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IEE Electric Power Applications, vol. 1, no. 3, pp. 395-401, May 2007.
    [23]S. K. Sahoo, S. K. Panda, and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 200-208, January 2005.
    [24]H. Sahraoui, H. Zeroug, and H. A. Toliyat, “Switched reluctance motor design using neural-network method with static finite-element simulation,” IEEE Transactions on Magnetics, vol. 43, no. 12, pp. 4089-4095, December 2007.
    [25]H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 2911-2921, September 2010.
    [26]C. J. Bateman, B. C. Mecrow, A. C. Clothier, P. P. Acarnley, and N. D. Tuftnell, “Sensorless operation of an ultra-high-speed switched reluctance machine,” IEEE Transactions on Industry Applications, vol. 46, no. 6, pp. 2329-2337, November/December 2010.
    [27]K. R. Geldhof, A. P. M. V. D. Bossche, and J. A. Melkebeek, “Rotor-position estimation of switched reluctance motors based on damped voltage resonance,” IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 2954-2960, September 2010.
    [28]A. D. Cheok and Z. Wang, “Fuzzy logic rotor position estimation based switched reluctance motor DSP drive with accuracy enhancement,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 908-921, July 2005.
    [29]I. H. A. Bahadly, “Examination of a sensorless rotor position measurement method for switched reluctance drive,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 288-295, January 2008.
    [30]A. Khalil, I. Husain, S. A. Hossain, S. Gopalakrishnan, A. M. Omekanda, B. Lequesne, and H. Klode, “A hybrid sensorless SRM drive with eight- and six-switch converter topologies,” IEEE Transactions on Industry Applications, vol. 41, no. 6, pp. 1647-1655, November/December 2005.
    [31]J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proceedings - Electric Power Applications, vol. 153, no. 3, pp. 348-360, May 2006.
    [32]J. Li, X. Song, and Y. Cho, “Comparison of 12/8 and 6/4 switched reluctance motor: noise and vibration aspects,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4131-4134, November 2008.
    [33]D. Panda and V. Ramanarayanan, “Reduced acoustic noise variable dc-bus-voltage-based sensorless switched reluctance motor drive for HVAC applications,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 2065-2078, August 2007.
    [34]J. Sun, Q. Zhan, S. Wang, and Z. Ma, “A novel radiating rib structure in switched reluctance motors for low acoustic noise,” IEEE Transactions on Magnetics, vol. 43, no. 9, pp. 3630-3637, September 2007.
    [35]J.Y. Chai and C.M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Electric Power Applications, vol. 4, no. 5, pp. 380-396, May 2010.
    [36]K. D. Gusseme, W. R. Ryckaert, D. M. V. D. Sype, J. A. Ghijselen, J. A. Melkebeek, and L. Vandevelde “A boost PFC converter with programmable harmonic resistance,” IEEE Transactions on Industry Applications, vol. 43, no. 3, pp. 742-750, May/June 2007.

    [37]R. T. Chen and Y. Y. Chen, “Single-stage push-pull boost converter with integrated magnetics and input current shaping technique,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1193-1203, September 2006.
    [38]J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 30-42, March 2009.
    [39]D. H. Lee, Z. G. Lee, J. Liang, and J. W. Ahn, “Single-phase SRM drive with torque ripple reduction and power factor correction,” IEEE Transactions on Industry Applications, vol. 43, no. 6, pp. 1578-1587, November/December 2007.
    [40]R. L. Lin, H. P. Chi, and S. C. Gu, “High electromechanical efficiency resonant Miller-type driver for switched reluctance motors,” IEEE-PEDS, pp. 1211-1215, November 2009.

    無法下載圖示 全文公開日期 2016/07/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE