簡易檢索 / 詳目顯示

研究生: 徐俊硯
Chun-yen Hsu
論文名稱: 低溫鋁擴散於氫化非晶矽層形成p型膜層及氫化氮化矽應用於矽晶片鈍化之研究
low temperature alumunum diffusion into a-Si:H layer and study of a-SiNx:H passivation layer
指導教授: 洪儒生
Lu-sheng Hong
口試委員: 徐文慶
none
何思樺
none
周賢鎧
Shyan-kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 113
中文關鍵詞: 氫化非晶矽低溫熱擴散擴散係數氫化氮化矽鈍化層
外文關鍵詞: a-Si:H, aluminum, low temperature diffusion, diffusivity, a-SiNx:H, passivation layer
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文第一部分探討金屬鋁層與氫化非晶矽層接合後,
在低溫下鋁擴散進入非晶矽層形成 p 型膜的現象。研究發現,
當擴散溫度 200℃、擴散時間大於 30 分鐘,p 型膜層呈現微
晶化的結構,其導電率可達到 0.24 S/cm,載子濃度達 5.8×1020
cm- 3
;當擴散溫度控制在 175℃、擴散時間大於 90 分鐘,膜
層依然可保持非晶結構,其導電率為 0.46 S/cm,載子濃度僅
4.58×1014 cm-3
。另由不同擴散溫度下的鋁濃度分布 SIMS 實
驗結果發現,鋁在氫化非晶矽膜層內的擴散活化能為 0.668
eV。
第二部分探討以氮氣、矽甲烷、氫氣製備氫化非晶氮化
矽薄膜應用於鈍化單晶矽基材表面的研究。結果發現,氮氣
流量為 40 sccm、基材溫度為 400℃、氫氣流量為 10 sccm 時,
所製備的氮化矽層在鈍化 n 型單晶矽基材表現出相對較高的
載子生命周期 1115 µs。
第三部分探討應用新型鋁低溫擴散製程到實際單矽晶
太陽能電池製作,形成 a-Si:H(n)/a-Si:H(i)/c-Si(p)/Al+ (p+ )的
異質接面結構後,藉由 µ-PCD 量測獲得理論值開路電壓可達
到 687 mV。


First part of this thesis fabricates p+ thin film by
aluminum low temperature diffusion in amorphous silicon thin
film. p+ thin film fabricated under different experimental
parameters, such as diffusion temperature and diffusion time.
The p+ thin film measured by Raman, IV, Hall and SIMS which
showed the structure, conductivity, carrier concentration as
well as Al profile in p+ thin film. As a results, the film showed
microcrystalline structure when diffusion temperature was
higher than 200℃. The conductivity and carrier concentration
of p+ thin film followed by 12.2 Scm- 1 and 5.85×1020 cm- 3 .
When diffusion temperature at 175 ℃ , the film showsed
amorphous structure. The conductivity and carrier
concentration of p+ thin film followed by 0.45 Scm- 1 and 4.58×
1014 cm- 3. Active energy of aluminum diffuse in a-Si:H is 0.688
eV.
Second part of this thesis fabricates a-SiNx by nitrogen.
The a-SiNx thin film fabricateed under different experimental
parameters, such as N2 flow rate, deposition temperature and
H2 flow rate. The a-SiNx thin film was measured by XPS, FTIR,
and Sinton which showed the N/Si ratio, bonding properties
and carrier lifetime. Results showed that N2 flow rate,
deposition temperature and H2 flow rate follow by 40 sccm,
400℃ and 10 sccm had best carrier lifetime which was 1115
µs.
Third part of this thesis fabricated low temperature
diffusion solar cell. According to different sequence of thin
film layers deposited and aluminum layer deposited that we
could use Sinton measurement to know the implied Voc. The
best result reached 687 mV.

摘 要 ………………………………………………………. I Abstract ………………………………………………………. II 誌 謝 ………………………………………………………. III 目 錄 ………………………………………………………. IV 圖 索 引 ………………………………………………………. VIII 表 索 引 ………………………………………………………. XIV 第一章 緒論 .................................................................... 1 1.1 導言 ................................................................... 1 1.2 非晶矽薄膜的性質 .............................................. 4 1.3 熱擴散摻雜太陽能電池 ....................................... 6 1.4 鈍化層之介紹 ..................................................... 9 1.5 高效率單晶矽太陽能電池之介紹 ........................ 13 1.6 研究理論與方向 ................................................. 17 第二章 實驗相關部分 ..................................................... 18 2.1 實驗藥品與氣體 ................................................. 18 2.2 實驗設備及操作方式 .......................................... 22 2.3 實驗程序 ........................................................... 28 2.3.1 鋁低溫熱擴散於本質非晶矽製備 P+ 薄膜.......... 28 2.3.2 成長 SiNx 鈍化層薄膜於單晶矽基材表面 ........ 29 2.4 分析儀器 ........................................................... 30 第三章 結果與討論 ......................................................... 47 3.1 低溫鋁熱擴散於本質非晶矽薄膜製備 P+ 薄膜 ...... 47 3.1.1 溫度變化對熱擴散 P+ 薄膜的影響 .................... 49 3.1.2 時間變化於 200℃對熱擴散 P+ 薄膜的影響 ....... 54 3.1.3 時間變化於 175℃對熱擴散 P+ 薄膜的影響 ....... 60 3.1.4 鋁熱擴散的擴散係數及活化能於本質非晶矽薄膜 ...................................................................... 66 3.2 成長 SiNx 鈍化層薄膜於單晶矽基材表面 ............ 79 3.2.1 氮氣流量對成長 SiNx 鈍化層的影響 ............... 79 3.2.2 溫度變化對成長 SiNx 鈍化層的影響 ............... 87 3.2.3 氫氣流量對成長 SiNx 鈍化層的影響 ............... 94 3.3 低溫擴散太陽能電池 ........................................ 101 3.3.1 不同 i/n 與 i 薄膜沉積順序對理論值開路電壓的影 響 ................................................................ 103 3.3.2 低溫熱擴散 P+ 對理論值開路電壓的影響 ........ 106 第四章 結論 ................................................................. 108 第五章 參考文獻 .......................................................... 110

1. International Energy Agency. Available from:
http://www.iea.org/.
2. Green, M.A., et al., Solar Cell Efficiency Tables (Version 34).
Progress in Photovoltaics, 2009. 17(5): p. 320-326.
3. Photonic Industry and Technology Development Association.
Available from: http://www.pida.org.tw/.
4. Sterling, H.F. and R.C.G. Swann, Chemical vapour
deposition promoted by r.f. discharge. Solid State Electronics,
1965. 8(8): p. 653-654.
5. Chittick, R.C., J.H. Alexander, and H.F. Sterling, The
Preparation and Properties of Amorphous Silicon.
Journal of the Electrochemical Society, 1969. 116: p. 77.
6. Kocka, J., M. Vanecek, and A. Triska, Amorphous Silicon and
Related Materials. 1988: World Scientific Publishing Co.
7. Stutzmann, M., D.K. Biegelsen, and R.A. Street, Detailed
investigation of doping in hydrogentated amorphous silicon
and germanium. Physical Reveiw B, 1987. 35: p. 5666.
8. 楊德仁, 太陽能電池材料 Solar Cell Materials. 2008: 五南
圖書出版股份有限公司.
9. Markvart, T., Solar Electricity. 1995, Chichester: Wiley &
Sons Ltd.
10. Schaper, M., et al., 20.1%-Efficient crystalline silicon solar
cell with amorphous silicon rear-surface passivation.
Progress in Photovoltaics, 2005. 13(5): p. 381-386.
11. Morales-Acevedo, A., et al., Effects of high temperature
annealing of aluminum at the back of n(+)-p-p(+) silicon
solar cells upon their spectral and electrical characteristics.
Solid-State Electronics, 1999. 43(11): p. 2075-2079.
12. Massalski, T.B., et al., Binary Alloy Phase Diagrams. 1990:
ASM International.
13. Tilley, R., Understanding Solids: The Science of Materials:
Wiley.
14. Dekkers, H.F.W., et al., Requirements of PECVD SiNx : H
layers for bulk passivation of mc-Si. Solar Energy Materials
and Solar Cells, 2006. 90(18-19): p. 3244-3250.
15. Aberle, A.G., et al., High-eficiency silicon solar cells:
Si/SiO2, interface parameters and their impact on device
performance. Progress in Photovoltaics: Research and
Applications, 1994. 2(4): p. 265-273.
16. Aberle, A.G. and R. Hezel, Progress in low-temperature
surface passivation of silicon solar cells using
remote-plasma silicon nitride. Progress in Photovoltaics:
Research and Applications, 1997. 5(1): p. 29-50.
17. Mackel, H. and R. Ludemann, Detailed study of the
composition of hydrogenated SiNx layers for high-quality
silicon surface passivation. Journal of Applied Physics, 2002.
92(5): p. 2602-2609.
18. Lelievre, J.F., et al., Study of the composition of
hydrogenated silicon nitride SiNx:H for efficient surface and
bulk passivation of silicon. Solar Energy Materials and Solar
Cells, 2009. 93(8): p. 1281-1289.
19. Hezel, R. and R. Schorner, Plasma Si nitride-A promising
dielectric to achieve high-quality silicon MIS IL solar cells.
Journal of Applied Physics, 1981. 52(4): p. 3076.
20. Robertson, J., W.L. Warren, and J. Kanicki, Nature of the Si
and N dangling bonds in silicon nitride. Journal of
Non-Crystalline Solids, 1995. 187: p. 297-300.
21. Yamamoto, Y., Y. Uraoka, and Y. T. Fuyuki, Passivation
Effect of Plasma Chemical Vapor Deposited SiNx on
Single-Crystalline Silicon Thin-Film Solar Cells. Japanese
Journal of Applied Physics, 2003. 42: p. 5135-5139.
22. Sritharathikhun, J., et al., Surface Passivation of Crystalline
and Polycrystalline Silicon Using Hydrogenated Amorphous
Silicon Oxide Film. Japanese Journal of Applied Physics,
2007. 46: p. 3296-3300.
23. Zhao, J., Recent advances of high-efficiency single
crystalline silicon solar cells in processing technologies and
substrate materials. Solar Energy Materials and Solar Cells,
2004. 82(1-2): p. 53-64.
24. Taira, S., et al., Our Approaches for Achieving HIT Solar
Cells With More Than 23%. Efficiency, in Proceedings of the
22nd EU PVSEC. 2007: Milano, Italy. p. 932.
25. Tanaka, M., et al., Development of New a-Si/c-Si
Heterojunction Solar Cells: ACJ-HIT (Artificially
Constructed Junction-Heterojunction with Intrinsic
Thin-Layer). Japanese Journal of Applied Physics, 1992. 31:
p. 3518-3522.
26. Taguchi, M., et al., HITTM cells - high-efficiency crystalline
Si cells with novel structure. Progress in Photovoltaics:
Research and Applications, 2000. 8(5): p. 503-513.
27. Wang, T.H., et al., in 14th Workshop on Crystalline Silicon
Solar Cells and Modules. 2004: Colorado.
28. Wilson, R.G., F.A. Stevie, and C.W. Magee, Secondary Ion
Mass Spectrometry, A Practical Handbook for Depth
Profiling and Bulk Impurity Analysis. 1989: John Wiley&
Sons, New York.
29. Wilson, R.G., SIMS quantification in Si, GaAs, and diamond
- an update. International Journal of Mass Spectrometry and
Ion Processes, 1995. 143(C): p. 43-49.
30. Sheppard, L.R., et al., Bulk diffusion of niobium in
single-crystal titanium dioxide. Journal of Physical
Chemistry B, 2007. 111(28): p. 8126-8130.
31. Sheppard, L.R., et al., Niobium diffusion in niobium-doped
titanium dioxide. Journal of Solid State Electrochemistry,
2009. 13(7): p. 1115-1121.
32. Haque, M.S., H.A. Naseem, and W.D. Brown,
Aluminum-induced degradation and failure mechanisms of
a-Si:H solar cells. Solar Energy Materials and Solar Cells,
1996. 41-42: p. 543-555.
33. Sarker, A., C. Banerjee, and A.K. Barua, Lowering of
thickness of boron-doped microcrystalline hydrogenated
silicon film by seeding technique. Solar Energy Materials and
Solar Cells, 2005. 86(3): p. 365-371.
34. Ozturk, M.C. and M.G. Thompson, Effects of annealing on
the dark conductivity and photoconductivity of rf sputtered
hydrogenated amorphous silicon. Applied Physics Letters,
1984. 44(9): p. 916-918.
35. Patrick Dugan, M. and T. Tsakalakos, Low temperature
characterization of AlSi diffusion kinetics. Superlattices and
Microstructures, 1988. 4(4-5): p. 565-570.
36. Berry, W.B., et al. Low temperature diffusivity for aluminum
and silver in amorphous silicon. 1988.
37. Vernhes, R., et al., Pulsed radio frequency plasma deposition
of a-SiNx : H alloys: Film properties, growth mechanism, and
applications. Journal of Applied Physics, 2006. 100(6).
38. Wang, M., et al., Light emission properties and mechanism of
lowerature prepared amorphous SiNX films. I. Roomerature
band tail states photoluminescence. Journal of Applied
Physics, 2008. 104(8).
39. Hanyaloglu, B.F. and E.S. Aydil, Low temperature plasma
deposition of silicon nitride from silane and nitrogen plasmas.
Journal of Vacuum Science and Technology A: Vacuum,
Surfaces and Films, 1998. 16(5): p. 2794-2803.
40. Tabata, A., K. Mazaki, and A. Kondo, Influence of hydrogen
addition and gas pressure on nitride layer formation on
microcrystalline silicon thin films by a hot-wire chemical
vapor method using nitrogen gas. Surface & Coatings
Technology, 2010. 204(16-17): p. 2559-2563.
41. Smith, D.L., et al., Mechanism of SiNxHy deposition from
NH3-SiH4 plasma. Journal of the Electrochemical Society,
1990. 137(2): p. 614-623.

無法下載圖示 全文公開日期 2015/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE