簡易檢索 / 詳目顯示

研究生: 楊秉融
Ping-jung Yang
論文名稱: 摻鋁氧化鋅對透明AZO/SiOx/ITO元件之電阻切換影響
Effect of Aluminum-doped Zinc Oxide in Transparent AZO/SiOx/ITO Device for Resistance Switching
指導教授: 周賢鎧
Shyankay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
羅吉宗
JyiTsong Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 摻鋁氧化鋅銦錫氧化物氧化矽透明電阻式記憶體
外文關鍵詞: AZO, SiOx, ITO, transparent RRAM
相關次數: 點閱:255下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以具有銦錫氧化物(Indium tin oxide,ITO)薄膜的玻璃為基材,反應濺鍍氧化矽中間電阻層,濺鍍摻鋁氧化鋅(Aluminum-doped zinc oxide,AZO)為上電極,製作出AZO/SiOx/ITO三層結構之透明電阻式記憶體。
    AZO/SiOx/ITO元件展現出正向偏壓下Set,負向偏壓Reset的穩定雙極式切換性質,能操作電阻切換至少達到100次以上,且高低電阻比值可達將近16,為良好的電阻式記憶體元件。
    進一步分析電阻切換機制,配合XPS分析結果得知中間電阻層氧化矽中含有鋅元素,以及低電阻態電阻隨溫度上升而上升,屬於金屬導電性質,因此我們推測AZO/SiOx/ITO元件電阻切換為金屬鋅燈絲形成與中斷所致。低電阻態分析結果於低電壓時屬於歐姆接觸,高電壓時符合普爾-法蘭克發射機制;高電阻態分析也是低電壓時為歐姆接觸,高電壓下符合普爾-法蘭克發射機制。
    分析不同處理後AZO/SiOx/ITO元件的性質變化,經過退火處理的元件其Forming電壓下降,可推測為鋅擴散分布更廣,使得元件易形成導電路徑之故;中間電阻層氧化矽經微波氫氣電漿還原處理後,除了Forming電壓明顯下降外,其高電阻態機制分析屬於空間電荷限制傳導,可以推測歸因於還原處理,使得中間電阻層中氧減少及缺陷產生造成,另外缺氧的氧化矽搶氧化鋅的氧,使得中間電阻層中金屬鋅含量增加,造成元件電阻值下降。
    最後對AZO/SiOx/ITO元件進行穿透率測試,元件於可見光範圍穿透率可達到85 %以上,甚至於440 nm波長可達到95 %以上的穿透率,說明此元件具有高度透光性,為透明電阻式記憶體。


    For constructing the transparentresistance random access memory(RRAM), we use indium tin oxide(ITO) as the bottom electrode, silicon oxide (SiOx) as the insulator, and aluminum-doped zinc oxide (AZO) as the top electrode to fabricate AZO/SiOx/ITO transparent RRAM.
    The as-prepared transparent RRAM is in high resistance state (HRS). The RRAM required a forming process by applying a positive bias on the top electrode to switch to low resistance state (LRS). Then transparent RRAM exhibited bipolar switching of resistance. This RRAM performed two resistance state with resistance ratios, RHRS/RLRS, of about 16 during 100 cycles of endurance testing.
    In X-ray photoelectron spectroscopy analysis, zinc was present in silicon oxide. Further study of temperature dependence of resistance showed that resistance in LRS rises with temperature increasing. Therefore, we suggested that the resistance switching was due to the forming and rupturing of zinc filament in the SiOx. Electrical characterization resulted in low resistance state showing ohmic conduction in low voltage, with Poole-Frenkel emission in high voltage. The high resistance state also showed ohmic conduction in low voltage, and Poole-Frenkel emission in high voltage.
    Whether the devices were treated by annealing or reduction, they all presented lower forming voltage and lower resistance than the as-prepared one. We suggest that it was caused by diffusion of zinc or reducing ZnO to zinc in silicon oxide layer. After reduction treatment, the devices showed space-charge-limited-conduction in high resistance state. It could be speculated that due to producing more defect during reduction. In addition, silicon is more easy to oxidation than zinc. So there were more zinc content in silicon oxide layer to reduce the resistance.
    This AZO/SiOx/ITO device showed highly transparent in visible region. The average transmittance is over 85%, even in 440 nm wavelength, it showed more than 95%. This RRAM has potential to be integrated in transparent electronics in the future.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 前言與研究動機 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 非揮發式記憶體 3 2.1.1 鐵電式記憶體 3 2.1.2 磁阻式記憶體 3 2.1.3 相變化式記憶體 4 2.1.4 電阻式記憶體 4 2.2 電阻式記憶體切換機構 6 2.2.1 導電燈絲機構 6 2.2.2 界面導電機構 7 2..2.3 離子遷徙機構 8 2.3 電阻式記憶體漏電流機構 9 2.3.2 歐姆接觸(Ohmic contact) 11 2.3.3 傅勒-諾德翰穿隧(Fowler-Nordheim tunneling)機制 12 2.3.4 普爾-法蘭克發射(Poole-Frenkel emission)機制 13 2.3.5 空間電荷傳導(Space-charge limited conduction)機制 14 2.4 氧化矽電阻式記憶體 15 2.5 透明電阻式記憶體 28 第三章 實驗方法與步驟 34 3.1 實驗材料與藥品規格 34 3.2 實驗步驟 35 3.2.1 試片清洗 35 3.2.2 中間氧化矽電阻層製作 36 3.2.3 中間氧化矽電阻層微波電漿還原處理 37 3.3.4 上電極AZO製作 37 3.3.5 AZO/SiOx/ITO元件退火處理 37 3.3 實驗儀器與設備 41 3.3.1 使用製程設備簡表 41 3.3.2 磁控式濺鍍系統 41 3.3.3石英管爐 42 3.3.4微波電漿系統 43 3.3.5 場發射雙束型聚焦離子束(Dual Beam Focus Ion Beam) 44 3.4 分析儀器與設備 46 3.4.1 分析儀器檢表 46 3.4.2 半導體參數分析儀 47 3.4.3 橢圓偏光儀(Ellipsometer) 47 3.4.4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 48 3.4.5 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 49 3.4.6 X光光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 49 3.4.7 紫外光可見光光譜儀(UV/VIS Sectophotometer) 50 3.4.8 電化學測試系統 50 第四章 實驗結果與討論 51 4.1 AZO/SiOx/ITO元件成分特性分析 51 4.1.1 元件縱深分析 51 4.1.2 AZO電極主要元素分析 54 4.1.3 中間電阻層氧化矽成分析 56 4.1.4 ITO電極主要成分分析 62 4.2 AZO/SiOx/ITO元件微觀結構分析 63 4.2.1 AZO/SiOx/ITO三層結構各層膜厚 63 4.2.2 AZO/SiOx/ITO之高解析穿透式電子顯微鏡分析 65 4.3 AZO/SiOx/ITO元件電性分析 66 4.3.1 AZO/SiOx/ITO元件各層電阻係數 67 4.3.2 AZO/SiOx/ITO元件電流電壓曲線 68 4.3.3 AZO/SiOx/ITO元件電阻切換機制分析 71 4.3.4 AZO/SiOx/ITO元件電阻切換探討 72 4.4 AZO/SiOx/ITO元件光學性質分析 80 4.4.1 AZO與SiOx薄膜光學性質 81 4.4.2元件可見光穿透率分析 81 4.5 AZO/SiOx/ITO元件不同製程處理比較 82 4.5.1 AZO/SiOx/ITO元件退火處理 83 4.5.2 中間電阻層氧化矽氫氣電漿還原處理 86 4.5.3不同處理對Forming的影響 89 第五章 結論 91 第六章 未來展望 92 參考文獻 93 附錄 102 JCPD cards-ZnO 102 JCPD cards-ITO 103 Ellingham diagram-Ⅰ 104 Ellingham diagram-Ⅱ 105 XPS-Zn 106 XPS-In 107 XPS-O 108 XPS-Si 109 XPS-Al 110 XPS-Sn 111

    [1] 吳雅婷,「電漿氧化成長氧化鋁與氧化鋁-氧化銅介電層之單極式電阻切換研究」,國立台灣科技大學材料科學與工程所碩士學位論文,民國101年。
    [2] 趙啟良,「以電漿氧化方式成長氧化鉭摻銅薄膜之雙極式電阻切換研究」,國立台灣科技大學材料科學與工程所碩士學位論文,民國101年。
    [3] H.-S.P. Wong,H.-Y. Lee, S. Yu,Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, “Metal–Oxide RRAM.” Proceedings of the IEEE 100 (2012) 1951-1970.
    [4] T.W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films.” Joural of Applied Physics 33 (1962) 2669-2682.
    [5] W.E. Beadle, J.F. Gibbons, “Switching properties of thin NiO films.” Solid-State Electronics 7 (1964) 785-790.
    [6] G. Dearnaley, A.M. Stoneham, D.V. Morgan, "Electrical phenomena in amorphous oxide films." Report on Progress Physics 33 (1970) 1129-1191.
    [7] J.G. Simmons, “Conduction in thin dielectric films.” Joural of Physics D: Applied Physics 4 (1971) 613-657.
    [8] Y. Watanabe, J.G. Bednorz, A. Bietsch, D. Widmer, C. Gerber, A. Beck, S.J. Wind, “Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals.” Applied Physics Letters 78 (2001) 3738-3740.
    [9] A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, “Reproducible switching effect in thin oxide films for memory applications.” Applied Physics Letters 77 (2000) 139-141.
    [10] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, Y. Sugiyama, “Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V.” Technical Digest International Electron Devices Meeting, IEDM (2007) 767-770.
    [11] B.J. Choi, S. Choi, K.M. Kim, Y.C. Shin, C.S. Hwang, S.-Y. Hwang, S.-S. Cho, S. Park, S.-K. Hong, “Study on the resistive switching time of TiO2 thin films” Applied Physics Letters 89 (2006) 012906.
    [12] A. Chen, S. Haddad., Y.C. Wu, Z. Lan, T.N. Fang, S. Kaza, “Switching characteristics of Cu2O metal-insulator-metal resistive memory.” Applied Physics Letters 91 (2007) 123517.
    [13] C.Y. Lin, C.-Y. Wu, C.-Y. Wu, T.C. Lee, F.L. Yang, C. Hu, T.Y. Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices.” IEEE Electron Device Letters 28 (2007) 366-368.
    [14] T. Sakamto, H. Sunamura, H. Kawaura, T. Haesegawa, T. Nakayama, M. Aonob, “Nanometer-scale switches using copper sulfide.” Applied Physics Letters 82 (2003) 3032-3034.
    [15] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, “Quantized conductance atomic switch.” Nature 433 (2005) 47-50.
    [16] H. Akinaga, H. Shima, “Resistive random access memory (ReRAM) based on metal oxides.” Proceeding of the IEEE 98 (2010) 2237-2251.
    [17] K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, H. Takagi, “Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices.” Japanese Journal of Applied Physics 47 (2008) 6266-6271.
    [18] G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film.” Applied. Physics. Letters 91 (2007) 222103.
    [19] U. Russo, C. Cagli, S. Spiga, E. Cianci, D. Ielmini, “Impact of electrode materials on resistive-switching memory programming.” IEEE Electron Device Letters 30 (2009) 817-819.
    [20] D. Ielmini, S. Spiga, F. Nardi, C. Cagli, A. Lamperti, E. Cianci, M. Fanciulli, “Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices.” Journal of Applied Physics 109 (2011) 034506.
    [21] S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin, “Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films.” Applied Physics Letters 95 (2009) 112904.
    [22] J. Park, S. Jung, J. Lee, W. Lee, S. Kim, J. Shin, H. Hwang, “Resistive switching characteristics of ultra-thin TiOx.” Microelectronic Engineering 88 (2011) 1136-1139.
    [23] L. Zhao, J. Zhang, Y. He, X. Guan, H. Qian, Z. Yu, “Dynamic modeling and atomistic simulations of set and reset operations in TiO2-based unipolar resistive memory.” IEEE Electron Device Letters 32 (2011) 677-679.
    [24] B. Magyari-Kpe, M. Tendulkar, S.-G. Park, H.D. Lee, Y.Nishi, “Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.” Nanotechnology 22 (2011) 254029.
    [25] A. Sawa, “Resistive switching in transition metal oxides. ” Materials Today 11[6] (2008) 28-36.
    [26] Y. Hirose, H. Hirose, “Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films.” Journal of Applied Physics 47 (1976) 2726.
    [27] S. Peng, F. Zhuge, X. Chen, X. Zhu, B. Hu, “Mechanism for resistive switching in an oxide-based electrochemical metallization memery.” Applied Physics Letters 100 (2012) 072101.
    [28] 李雅明,「固態電子學」,全華科技圖書股份有限公司,民國84年。
    [29] D.A. Neamen, Semiconductor Physics & Devices. McGraw-Hill Science Inc, New York, 2002.
    [30] J. Ranuarez, M. Deen, C. Chen, “A review of gate tunneling current in MOS devices.” Microelectronic Relibility 46 (2006) 1939-1956.
    [31] 王之賢,「鐵酸鉍薄膜之電阻轉換效應」,國立清華大學材料科學與工程所碩士論文,民國98年。
    [32] A. Rose, “Space charge limited currents in solids.” Physical review 97 (1955) 1538-1544.
    [33] Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, “Field-induced resistive switching based on space-charge-limited current.” Applied Physics Letters 90 (2007) 022907.
    [34] C. Schindler, S. Thermadam, R. Waser, M.N. Kozicki, “Bipolar and unipolar resistive switching in Cu-Doped SiO2.” IEEE Transation on ElectronDevice 54 (2007) 2762-2768.
    [35] C. Schindler, M. Weides, M.N. Kozicki, R. Waser, “Low current resistive switching in Cu-SiO2 cell.” Applied Physics Letters 92 (2008) 122910.
    [36] L. Zhang, R. Huang, D. Gao, D. Wu, Y. Kuang, P. Tang, W. Ding, A.Z.H. Wang, Y. Wang, “Unipolar resistive switch based on silicon monoxide realized by CMOS technology.” IEEE Electron Device Letters 30 (2009) 870-872.
    [37] 利嘉仁,「共濺鍍法沉積之銅摻雜二氧化矽薄膜的電阻切換特性與電極效應」,國立台灣科技大學工程技術研究所碩士學位論文,民國99年。
    [38] 韓明恩,「界面氮氧化鉭氧化層對銅摻雜二氧化矽電阻切換性質的影響」,國立台灣科技大學材料科學與工程所碩士學位論文,民國100年。
    [39] Y.E. Syu, T.M. Tsai, Y.C. Hung, K.C. Chang, M.J. Tsai, M.J. Kao, S.M. Sze, “Redox reaction switching mechanism in RRAM device with Pt/CoSiOx/TiN structure.” IEEE Electron Device Letters 32 (2011) 545-547.
    [40] T.M. Tsai, K.C. Chang, T.C. Chang, Y.E. Syu, S.L. Chuang, G.W. Chang, G.R. Liu, M.C. Chen, H.C. Huang, S.K. Liu, Y.H. Tai, D.S. Gan, Y.L. Yang, T.F. Young, B.H. Tseng, K.H. Chen, M.J. Tsai, C. Ye, H. Wang, S.M. Sze, “Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications.” IEEE Electron Device Letters 33 (2012) 1696-1698.
    [41] K.C. Chang, T.M. Tsai, T.T. Chang, Y.E. Syu, C.C. Wang, “Reducing operation of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment.” Applied Physics Letters 99 (2011) 263501.
    [42] T.M. Tsai, K.C. Chang, T.C. Chang, Y.E. Syu, K.H. Liao, “Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment.” Applied Physics Letters 101 (2012) 112906.
    [43] K.C. Chang, T.M. Tsai, T.C. Chang, H.H. Wu, J.H. Chen, Y.E. Syu, G.E. Chang, T.J. Chu, G.R. Liu, Y.T. Su, M.C. Chen, J.H. Pan, J.Y. Chen, C.W. Tung, H.C. Huang, Y.H. Tai, D.S. Gan, S.M. Sze, ”Characteristics and mechanisms of silicon-oxide-based resistance random access memory.” IEEE Electron Device Letters 34 (2013) 399-401.
    [44] J.Q. Huang, L.P. Shi, E.G. Yeo, K.J. Yi, R. Zhao, “Electrochemical metallixzation resistive memory device using ZnS-SiO2 as a solid electrolyte.” IEEE Electron Device Letters 33 (2012) 98-100.
    [45] 何英豪,「SiOx薄膜之電阻式記憶體電阻轉換特性研究」,國立清華大學材料科學與工程所碩士論文,民國98年。
    [46] J. Yao, Z. Sun, D. Natelson, J.M. Tour, “Resistive switches and memories from silicon oxide.” Nano Letters 10 (2010) 4105-4110.
    [47] J. Yao, L. Zhong, D. Natelson, J.M.Tour, “Intrinsic resistive switching and memory effects in silicon oxide.” Applied Physics A 102 (2011) 835-839.
    [48] J. Yao, L. Zhong, D. Natelson, J.M. Tour, “In situ imaging of the conducting filament in a silicon oxide resistive switch.“ Scientific Reports 242 (2012) 1-5.
    [49] G. Xia, Z. Ma, X. Jiang, H. Yang, J. Xu, L. Xu, W. Li, K. Chen, D. Feng, “Direct observation of resistive switching memories behavior from nc-Si embedded in SiO2 at room temperature.” Journal of Non-Crystalline Solids 358 (2012) 2348-2352.
    [50] Y. Wang, Y.T. Chen, F. Xue, F. Zhou, Y.F. Chang, “Memory switching properties of e-beam evaperated SiOx on N++Si substrate.” Applied Physics Letters 100 (2012) 083502.
    [51] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, “Resistive switching in silicon suboxide films.” Journal of Applied Physics 111 (2012) 074507.
    [52] J. Yao, L. Zhong, D. Natelson, J.M. Tour, “Etching-dependent reproducible memory switching in vertical SiO2 structure.” Applied Physics Letters 93 (2008) 253101.
    [53] Y-T. Chen, B. Fowler, Y. Wang, F. Xue, F. Zhou, Y.F. Chang, P.Y. Chen, J.C. Lee, “Tristae operation in resistive switching of SiO2 thin films.” IEEE Electron Device Letters 33 (2012) 1702-1704.
    [54] J.W. Seo, J.W. Park, K.S. Lim, J.H. Yang, S.J. Kang, “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching.” Applied Physics Letters 93 (2008) 223505.
    [55] Y. Meng, P.J. Zhang, Z.Y. Liu, Z.L. Liao, X.Y. Pan, X.J. Liang, H.W. Zhao, D.M. Chen, “Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches.” Chinese Physics B 19 (2010) 037304.
    [56] W.H. Tzeng, C.W. Zhong, K.C. Liu, K.M. Chang, H.C. Lin, Y.C. Chan, C.C. Kuo, F.Y. Tsia, M.H. Tseng, P.S. Chen, H.Y. Lee, F. Chen, M.J. Tsai, “ Resistive switching characteristics of multilayered (HfO2/Al2O3)n n=19 thin film.” The Solid films 520 (2012) 3415-3418.
    [57] C.Y. Liu, Y.R. Shih, S.J. Huang, “Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature.” Solid State Communications 159 (2013) 13-17.
    [58] K.H. Chen, C.H. Liao, J.H. Tsai, “Electrical conduction and bipolar switching properties in transparent vanadium oxide resistive random access memory(RRAM) devices.” Applied Physics A 110 (2012) 211-216.
    [59] J. Yao, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, J.M. Tour, “Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene.” Applied Physics A 110 (2012) 211-216.
    [60] X. Gao, X. Li, X. Liu, C. Yang, R. Yang, P. Jin, “All-ZnO-based transparent resistive random access memory device fully fabricated at room trmperature.” Journal of Physics D: Applied Physics 44 (2011) 1-5.
    [61] S.I. Jun, T.E. Mcknight, M.L. Simpson, P.D. Rack, “Characterisation of reactively sputtered silicon oxide for thin-film transistor fabication.” Electronics Letters 44 (2005) 822-823.
    [62] 柯賢文,「表面與薄膜處理技術」,全華科技圖書股份有限公司,民國94年。
    [63] 伍秀菁,「真空技術與應用」,行政院國家科學委員會精密儀器發展中心,民國93年。
    [64] C.A. Volkert, A.M. Minor, “Focused ion beam microscopy and micromachining.” MRS bulletin 32 (2007) 389-399.
    [65] 羅吉宗,「薄膜科技與應用」,全華圖書股份有限公司,民國98年。
    [66] 李正中,「薄膜光學與鍍膜技術」,藝軒圖書,民國98年。
    [67] Y.-S. Jeong, H.-U. Lee, K. Ahn, J.-H. Jeon, S.-Y. Jeong, C.-R. Cho, W.-J. Lee, “Enhanced electrical and optical properties of atmospheric-plasma-treaed Al-doped ZnO thin films with hydrogen gas.” Journal of Korean Physical Society 54 (2009) 944-949.
    [68] E. Paparazzo, “X-ray photo-emission and Auger spectra of damage induced by Ar+-ion etching at SiO2 surfaces.” Journal of Physics D: Applied Physics 20 (1987) 1091.
    [69] N. Mori, S. Ooki, N. Masubuchi, A. Tanaka, M. Kogoma, T. Ito, “Effects of postannealing in ozone enviroment on opto-electrical properties of Sn-doped In2O3 thin films.” Thin Solid Films 411 (2002) 6-11.
    [70] I.J. Lee, C.-J. Yu, T.-B. Hur, H.-K. Kim, C.-O. Kim, J-Y. Kim, “Observation of complete oxidation of InN to In2O3 in air at elevated temperatures by using X-ray photoemission spectroscopy.” Journal of the Korean Physical Society 49 (2006) 2176-2179.
    [71] C. Tang, L. Feller, P. Rossbach, B. Keller, J. Voros, S. Tosatti, M. Textor, “Adsorption and electrically stimulated desorption of the triblock copolymer poly(propylene sulfide-bl-ethylene glycol)(PPS-PEG) from indium tin oxide surfaces.” Suface Science 600 (2006) 1510-1517.
    [72] McCurry, Nancy M., “Aluminum temperature coefficient of resistance vs. grain structure.” Theses and Dissertations (1993) Paper 155.
    [73] C.P. Poole, Encyclopedic dictionary of condensed matter physics. Elservier Science, 2004.
    [74] I.H. Malitson, “Interspecimen comparison of refracative index of fused silica.” Journal of the Optical Society of America 55 (1965) 1205-1208.
    [75] G. Ghosh, “Dispersion-equation coefficient for the refractive index and birefringence of calcite and quartz.” Optics Communication 163 (1999) 95-102.
    [76] 戴漢昇,「直流脈衝電源磁控濺鍍二氧化矽絕緣膜及全濺鍍製程矽晶粒定位薄膜電晶體之開發」,國立台灣科技大學光電工程所碩士論文,民國97年。
    [77] G. Hass, C.D. Salzberg, “Optical properties of silicon monoxide in the wavelength region from 0.24 to 14.0 microns.” Journal of the Optical Society of America 44 (1954) 181-183.
    [78] H.G. Francois-Saint-Cyr, F.A. Stevie, J.M. Mckinley, L. Chow, K.A. Richardson, “Diffusion of 18 elements implanted into thermally grown SiO2.” Journal of Applied Physics 94 (2003) 7433-7439.

    QR CODE