簡易檢索 / 詳目顯示

研究生: 方之宜
Chih-Yi Fang
論文名稱: 微電漿輔助石墨烯量子點與金奈米粒子異質複合材料之合成及其表面增強拉曼散射光譜應用
Microplasma-assisted fabrication of GQD/AuNP heteronanostructures for Surface-Enhanced Raman Scattering (SERS) detection
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 鄭智嘉
Chih-Chia Cheng
李以仁
I-Ren Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 72
中文關鍵詞: 微電漿石墨烯量子點異質複合材料表面增強拉曼散射
外文關鍵詞: microplasma, graphene quantum dot, heteronanostructure, SERS
相關次數: 點閱:449下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

奈米結構工程為一種強大且有用的技術,可以透過合成生產出具有多功能性的材料並且可應用在多方面的領域中;特別是針對具有獨特的局部表面等離子體共振的等離子體之核-殼奈米結構,它主要藉由表面增強拉曼散射(SERS)使訊號大幅地提升,使它可以偵測至分子級的超高敏感度檢測。
近期,石墨烯量子點(GQDs)是一種獨特的石墨烯衍生物,由於其優異的性能,包括低毒性,光穩定性,生物相容性和優異的溶解性,引起了很多關注。通過塗佈GQD殼可明顯地改變其光學性質和電子結構。此外,高生物相容性的金奈米粒子 (AuNPs) 結構可以在奈米結構周圍的空間狹窄區域引導有效濃度的入射光進而產生強大的電磁場,並且為SERS檢測提供強烈的共振行為。因此,GQD/AuNP核-殼奈米結構的開發可以為高靈敏度SERS檢測創造出合理設計的活性材料。然而,使用一般常規方法製備這種奈米複合物的製程通常複雜,耗時,低效率,並且需要在高溫的條件下才可以使反應進行。
在這裡,我們通過使用大氣常壓微電漿展示了GQD/AuNP複合物的快速合成方法。微電漿被定義為在電極中之幾何形狀形成的氣體放電,其尺寸至少小於1mm,使它在大氣壓下使用液態化學合成技術也可以穩定操作。另外,在微電漿中形成的高能量物質能夠引發溶液中的電化學反應和成核成奈米顆粒而無需加入額外的化學還原劑進行反應。我們可以經由詳細的顯微鏡和光譜特徵分析得知,合成的GQDs/AuNPs核-殼奈米結構的形態和尺寸分佈可以通過改變反應條件來控制。通過導入不同發光波長的GQDs或調整GQDs/AuNPs的核-殼尺寸比,可以進一步探索其奈米結構的光學性質並於SERS光譜作分析,進一步地顯示GQDs/AuNPs異質結構複合物可以作為SERS之有效基材並在生物分子傳感檢測方面具有一定相當潛力之應用價值。


Nanostructure engineering has been proposed as a powerful and useful technology to fabricate functional materials for varying applications. In particular, plasmonic core-shell nanostructures with unique localized surface plasmon resonance, allowing surface-enhanced Raman scattering (SERS) occurred for an ultra-sensitive molecular-level detection.

Recently, graphene quantum dot (GQDs), a unique type of graphene derivatives, has stimulated a lot of attentions due to their exceptional properties including low toxicity, photostability, biocompatibility and excellent solubility. By coating a GQDs shell can significantly modify the optical properties and electronic structure. Moreover, bio-compatible Au nanostructures can generate great electromagnetic fields, leading a effective concentration of the incident light at the spatially narrow region around the nanostructures, providing a strong resonant behavior for SERS detection. Hence, the development of GQD/AuNP core-shell nanostructures can create a rational design of active materials for high sensitive SERS detection. However, the conventional approaches to prepare such nanohybrids are usually complicated, time consuming, inefficiency, and high temperature required.

Here we demonstrate a rapid synthesis method of GQD/AuNP by using atmospheric-pressure microplasmas. Microplasmas are defined as gaseous discharges formed in electrode geometries where at least one dimension is less than 1mm, which can be operated stably with an aqueous solution at atmospheric pressure. Energetic species formed in the microplasma are capable to initiating electrochemical reactions and nucleating particles in solution without chemical reducing agents. Detailed microscopic and spectroscopic characterizations indicate that the morphology and size distribution of as-produced GQDs/AuNPs core-shell nanostructures can be controlled via changing the reaction conditions. By sourcing different emissions of GQDs or adjusting core to shell ratio of GQDs/AuNPs nanostructure can further explore their optical properties for the SERS spectroscopic analysis and suggest that GQDs/AuNPs heterostructures can performed as an effective material for SERS-based biomolecular sensing.

Abstract………………………………………………………………………………...I 摘要………………………………………………………………………………...…II 致謝……………………………………………………………………………..……III Contents……………………………………………………………………………..IV List of Figures………………..……………………………………………………….V List of Tables…………………………………………………………………...….…VI 1 Introduction……………………………………………………………………….1 1.1 Surface-enhanced Raman Scattering (SERS)………………………………....1 1.1.1 Electromagnetic enhancement mechanism (EM)…………………..1 1.1.2 Chemical enhancement mechanism (CM)………………………….5 1.2 Förster Resonance Energy Transfer (FRET)…………………………………..8 1.3 Study of GQD-based structures hybrids……………………………………...11 1.3.1 Graphene Quantum Dot (GQD)……………………………...……11 1.3.2 Synthesis of GQD-based structures hybrids………………………15 1.3.3 GQD-based structures hybrids for SERS application……….…….19 2 Experiment Section………..……………………….............................................24 2.1 Chemicals………..……….………………......................................................24 2.2 Apparatus………..………………………........................................................24 2.3 Microplasma reactor set-up…………………………………………..……....24 2.3.1 Synthesis of gold nanoparticles (AuNPs)………………………...…..25 2.3.2 Synthesis of GQD/AuNP nanohybrids………………...……………..25 2.4 SERS-based substrate preparation……………………………………………26 3 Results and Discussions………..………………………....................................27 3.1 Characterization of gold nanoparticles (AuNPs) ………..………………...27 3.2 Characterization of GQD/AuNP nanohybrids………..……………………28 3.2.1 Varying emissions………..………………………..............................31 3.2.2 Varying structures………..………………………..............................37 4 Surface-enhanced Raman Scattering (SERS) ………..……………………....43 4.1 Effect of substrate materials on SERS performance……………...……….43 4.2 FRET effect on SERS enhancement……………………………………….45 4.3 Heterostructures effect on SERS enhancement………………………..….47 5 Conclusion………..……………………….........................................................50 6 Reference………..………………………...........................................................51 7 Supporting Information…………………..........................................................59 7.1 Enhance factor calculation...........................................................................62

1. Fleischmann, M., et al., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
2. Jeanmaire, D.L., et al., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20.
3. Albrecht, M.G., et al., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
4. Vendrell, M., et al., Surface-enhanced Raman scattering in cancer detection and imaging. Trends in biotechnology, 2013. 31(4): p. 249-257.
5. Schlücker, S., et al., Surface‐Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 2014. 53(19): p. 4756-4795.
6. Zou, F., et al., Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS applied materials & interfaces, 2015. 7(22): p. 12168-12175.
7. Pang, S., et al., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 2016. 85: p. 73-82.
8. Campion, A. et al., Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250.
9. Mosier-Boss, P.A., et al., Review of SERS substrates for chemical sensing. Nanomaterials, 2017. 7(6): p. 142.
10. Schatz, G.C., et al., Electromagnetic mechanism of SERS, in Surface-enhanced Raman scattering, Springer, 2006. p. 19-45.
11. Willets, K.A., et al., Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007. 58: p. 267-97.
12. Xu, X., et al., Fabrication and robotization of ultrasensitive plasmonic nanosensors for molecule detection with Raman scattering. Sensors (Basel), 2015. 15(5): p. 10422-51.
13. Aroca, R., et al., Surface-enhanced vibrational spectroscopy. 2006: John Wiley & Sons.
14. Persson, B.N.J., et al., Chemical contribution to surface-enhanced Raman scattering. Physical review letters, 2006. 96(20): p. 207401.
15. Le Ru, E., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
16. Wustholz, K.L., et al., Structure− activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2010. 132(31): p. 10903-10910.
17. Xu, H., et al., Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. Acs Nano, 2011. 5(7): p. 5338-5344.
18. Jensen, L., et al., Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5): p. 1061-1073.
19. Lombardi, J.R., et al., Theory of surface-enhanced Raman scattering in semiconductors. The Journal of Physical Chemistry C, 2014. 118(20): p. 11120-11130.
20. Vivoni, A., et al., Ab initio frequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface. The Journal of Physical Chemistry B, 2003. 107(23): p. 5547-5557.
21. Cardini, G., et al., Density functional study on the adsorption of pyrazole onto silver colloidal particles. The Journal of Physical Chemistry B, 2002. 106(27): p. 6875-6880.
22. Wu, D.-Y., et al., Density Functional Study and Normal-Mode Analysis of the Bindings and Vibrational Frequency Shifts of the Pyridine− M (M= Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) Complexes. The Journal of Physical Chemistry A, 2002. 106(39): p. 9042-9052.
23. Shim, S., et al., Resonance Raman Cross‐Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy. ChemPhysChem, 2008. 9(5): p. 697-699.
24. Xie, L., et al., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society, 2009. 131(29): p. 9890-9891.
25. Swathi, R., et al., Resonance energy transfer from a dye molecule to graphene. The Journal of chemical physics, 2008. 129(5): p. 054703.
26. Wang, X., et al., Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. Physical Chemistry Chemical Physics, 2012. 14(17): p. 5891-5901.
27. Förster, T., et al., Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 1948. 437(1‐2): p. 55-75.
28. Blagoi, G., et al., Fluorescence resonance energy transfer (FRET) based sensors for bioanalysis. 2004.
29. Freeman, R., et al., Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews, 2012. 41(10): p. 4067-4085.
30. Lakowicz, J.R., et al., Energy transfer, Principles of fluorescence spectroscopy. Springer, 1999, p. 367-394.
31. Wu, P., et al., Resonance energy transfer: methods and applications. Analytical biochemistry, 1994. 218(1): p. 1-13.
32. Chandan, H., et al., Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors and Actuators B, 2018. 258: p. 1191-1214.
33. Qiu, T., et al., A positively charged QDs-based FRET probe for micrococcal nuclease detection. Analyst, 2010. 135(9): p. 2394-2399.
34. Goldman, E.R., et al., A hybrid quantum dot− antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society, 2005. 127(18): p. 6744-6751.
35. Algar, W.R., et al., Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica chimica acta, 2010. 673(1): p. 1-25.
36. Ponomarenko, L., et al., Chaotic Dirac billiard in graphene quantum dots. Science, 2008. 320(5874): p. 356-358.
37. Benítez-Martínez, S., et al., Graphene quantum dots in analytical science. TrAC Trends in Analytical Chemistry, 2015. 72: p. 93-113.
38. Cayuela, A., et al., Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communication, 2016. 52(7): p. 1311-26.
39. Pu, C., et al., Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. Journal of the American Chemical Society, 2017. 139(9): p. 3302-3311.
40. Elvati, P., et al., Graphene quantum dots: effect of size, composition and curvature on their assembly. RSC Advances, 2017. 7(29): p. 17704-17710.
41. Huang, P., et al., Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure. The Journal of Physical Chemistry Letters, 2016. 7(15): p. 2888-92.
42. Fang, Q., et al., Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon, 2017. 118: p. 319-326.
43. Wang, D., et al., Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 2012. 50(6): p. 2147-2154.
44. Fan, L., et al., Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta, 2012. 101: p. 192-7.
45. Zhang, M., et al., Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012. 22(15).
46. Ge, J., et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014. 5: p. 4596.
47. Huang, J.J., et al., An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon, 2014. 70: p. 190-198.
48. Li, H., et al., Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition in English, 2010. 49(26): p. 4430-4.
49. Liu, R., et al., Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catalysis, 2013. 4(1): p. 328-336.
50. Han, S., et al., Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent. Applied Surface Science, 2015. 328: p. 368-373.
51. Park, B., et al., Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Research, 2016. 9(6): p. 1866-1875.
52. Tochikubo, F., et al., Liquid-phase reactions induced by atmospheric pressure glow discharge with liquid electrode. in Journal of Physics: Conference Series. 2014. IOP Publishing.
53. Chiang, W.-H., et al., Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3): p. 034011.
54. Mariotti, D., et al., Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Processes and Polymers, 2012. 9(11‐12): p. 1074-1085.
55. Akolkar, R., et al., Charge transfer processes at the interface between plasmas and liquids. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050811.
56. Becker, K., et al., Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55.
57. Shi, J. et al., Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. Physical review letters, 2006. 96(10): p. 105009.
58. Mariotti, D., et al., Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
59. Tian, Z., et al., Surface‐enhanced Raman spectroscopy: advancements and applications. Journal of Raman Spectroscopy, 2005. 36(6‐7): p. 466-470.
60. Kneipp, J., et al., SERS—a single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews, 2008. 37(5): p. 1052-1060.
61. Halvorson, R.A., et al., Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. 2010, ACS Publications.
62. Kodiyath, R., et al., Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. Journal of Materials Chemistry A, 2013. 1(8): p. 2777-2788.
63. Lal, S., et al., Tailoring plasmonic substrates for surface enhanced spectroscopies. Chemical Society Reviews, 2008. 37(5): p. 898-911.
64. Lin, X.-M., et al., Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and bioanalytical chemistry, 2009. 394(7): p. 1729-1745.
65. Xu, W., et al., Surface enhanced Raman spectroscopy on a flat graphene surface. Proceedings of the National Academy of Science, 2012. 109(24): p. 9281-6.
66. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano Letters, 2010. 10(2): p. 553-61.
67. Murray, C.B., et al., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 2000. 30(1): p. 545-610.
68. Yakes, M.K., et al., Three-dimensional control of self-assembled quantum dot configurations. ACS nano, 2010. 4(7): p. 3877-3882.
69. Cheng, H., et al., Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement. Acs Nano, 2012. 6(3): p. 2237-2244.
70. Liu, D., et al., Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nature Communications, 2018. 9(1): p. 193.
71. Xu, W., et al., Graphene: A Platform for Surface‐Enhanced Raman Spectroscopy. Small, 2013. 9(8): p. 1206-1224.
72. Britnell, L., et al., Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013. 340(6138): p. 1311-1314.
73. Ling, X., et al., Charge-transfer mechanism in graphene-enhanced Raman scattering. The Journal of Physical Chemistry C, 2012. 116(47): p. 25112-25118.
74. Loo, A.H., et al., Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Applied Materials & Interfaces, 2016. 8(3): p. 1951-7.
75. Jin, J., et al., Precisely Controllable Core–Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions. ACS Applied Materials & Interfaces, 2016. 8(41): p. 27956-27965.
76. Mu, Q., et al., Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst, 2014. 139(1): p. 93-98.
77. Patel, J., et al., Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology, 2013. 24(24).
78. Huang, X., et al., Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry. Nanoscale research letters, 2014. 9(1): p. 572.
79. Treguer-Delapierre, M., et al., Synthesis of non-spherical gold nanoparticles. Gold Bull, 2008. 41(2): p. 195-207.
80. Lee, J., et al., Nonclassical nucleation and growth of inorganic nanoparticles. Nature Reviews Materials, 2016. 1(8).
81. Liu, X., et al., Size controllable preparation of graphitic quantum dots and their photoluminescence behavior. Materials Letters, 2016. 162: p. 56-59.
82. Yang, M., et al., SERS-active gold lace nanoshells with built-in hotspots. Nano Lett, 2010. 10(10): p. 4013-9.
83. Charron, D.M. et al., Nanomedicine development guided by FRET imaging. Nano Today, 2018. 18: p. 124-136.
84. Chastain, J., et al., Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1992: Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota.
85. Liff, S.M., et al., High-performance elastomeric nanocomposites via solvent-exchange processing. Nature materials, 2007. 6(1): p. 76.
86. Ding, H., et al., Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016. 10(1): p. 484-91.
87. Wang, Y., et al., Thermodynamics versus kinetics in nanosynthesis. Angewandte Chemie International Edition in English, 2015. 54(7): p. 2022-51.
88. Oldenburg, S., et al., Nanoengineering of optical resonances. Chemical Physics Letters, 1998. 288(2-4): p. 243-247.
89. Ghosh Chaudhuri, R., et al., Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012. 112(4): p. 2373-433.
90. Carbone, L., et al., Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today, 2010. 5(5): p. 449-493.
91. Sun, Y., et al., Interfaced heterogeneous nanodimers. National Science Review, 2015. 2(3): p. 329-348.
92. Costi, R., et al., Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition in English, 2010. 49(29): p. 4878-97.
93. Dixon, J.M., et al., Conformational Change-Induced Fluorescence of Bovine Serum Albumin-Gold Complexes. Journal of the American Chemical Society, 2018. 140(6): p. 2265-2271.
94. Hildebrandt, P., et al., Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry, 1984. 88(24): p. 5935-5944.
95. Jensen, L., et al., Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
96. Liu, Y., et al., Few-Layer Graphene-Encapsulated Metal Nanoparticles for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2014. 118(17): p. 8993-8998.
97. Xu, S., et al., Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016. 222: p. 1175-1183.
98. Li, J.F., et al., Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chemical Society Reviews, 2015. 44(23): p. 8399-409.
99. Kim, Y.K., et al., One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small, 2015. 11(21): p. 2527-35.
100. Wang, J., et al., Monodispersed graphene quantum dots encapsulated Ag nanoparticles for surface-enhanced Raman scattering. Materials Letters, 2016. 162: p. 142-145.
101. Luo, P., et al., Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics, 2012. 14(20): p. 7360-6.
102. Liu, Z., et al., Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy. Analytical chemistry, 2012. 84(23): p. 10338-10344.
103. Yan, Z.X., et al., Superhydrophobic SERS Substrates Based on Silver-Coated Reduced Graphene Oxide Gratings Prepared by Two-Beam Laser Interference. ACS Applied Material Interfaces, 2015. 7(49): p. 27059-65.
104. Li, Y., et al., Gold nanoparticle integrated with nanostructured carbon and quantum dots: synthesis and optical properties. Gold Bulletin, 2015. 48(1-2): p. 73-83.
105. Samanta, A., et al., Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. Nano Letters, 2014. 14(9): p. 5052-7.
106. Hu, J., et al., Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS. Journal of the American Chemical Society, 2014. 136(29): p. 10299-307.
107. Yang, C., et al., Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects. Applied Surface Science, 2018. 436: p. 367-372.
108. Zhang, D., et al., The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors and Actuators B: Chemical, 2018. 256: p. 721-728.
109. Mühlig, A., et al., Fundamental SERS Investigation of Pyridine and Its Derivates as a Function of Functional Groups, Their Substitution Position, and Their Interaction with Silver Nanoparticles. The Journal of Physical Chemistry C, 2017. 121(4): p. 2323-2332.
110. Bell, S.E., et al., SERS enhancement by aggregated Au colloids: effect of particle size. Physical Chemistry Chemical Physics, 2009. 11(34): p. 7455-62.

無法下載圖示 全文公開日期 2023/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE