簡易檢索 / 詳目顯示

研究生: 黃祥凱
Siang-Kai Huang
論文名稱: 應用管式膜系統提濃奈米銀線溶液及評估濾液處理程序
Application of Cross Flow Membrane System to Concentrate Silver Nanowire Solution and Evaluation of Filtrate Treatment Procedure
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 李豪業
Hao-Yeh Lee
何郡軒
Jinn-Hsuan Ho
蔣雅郁
Ya-Yu Chiang
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: 奈米銀線管式膜截流過濾氧化程序
外文關鍵詞: Silver nanowires, Tubular membrane, Cross-flow filtration, Oxidation process
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 透明導電薄膜介紹及其應用 3 2.1.1 透明導電薄膜介紹 3 2.1.2 透明導電薄膜應用 9 2.2 奈米銀線製備方法 12 2.2.1 模板製備法 12 2.2.2 電化學製備法 13 2.2.3 光化學製備法 14 2.2.4 化學氣相製備法 15 2.2.5 化學液相製備法 16 2.3 銀奈米線塗佈介紹 21 2.4 銀奈米線分離與純化方法 23 2.4.1 薄膜過濾純化 23 2.4.2 自然沉降純化 25 2.4.3 離心純化 26 2.4.4 管式膜純化 27 2.5 本文中有機廢液降解之方法介紹 30 2.5.1 UV/H2O2複合式光催化法 30 2.5.2 電解芬頓法 35 第三章 實驗方法與步驟 37 3.1 實驗規劃 37 3.2 儀器設備及型號 38 3.2.1 管式膜系統圖及其內部結構 38 3.2.2 管式膜系統設備型號 44 3.2.3 VUV-H2O2系統圖 47 3.2.4 VUV-H2O2系統設備型號 49 3.2.5 VUV-H2O2-TiO2系統圖 50 3.2.6 VUV-H2O2-TiO2設備型號 51 3.2.7 電解芬頓系統圖 52 3.2.8 電解芬頓設備型號 54 3.3 廢液提濃及其後段處理之實驗步驟 55 3.3.1 管式膜提濃銀廢液 55 3.3.2 提濃液後段處理 55 3.3.3 上清液後段處理 55 3.4 分析儀器 58 第四章 結果與討論 60 4.1 管式膜系統實驗及探討 60 4.1.1 不同溶液對上清液流量之影響 60 4.1.2 攪拌對取樣濃度之影響 61 4.1.3 過濾面積對上清液流量之影響 64 4.1.4 壓力對上清液流量之影響 65 4.1.5 串/並聯對上清液流量之影響 72 4.1.6 滯留時間對上清液流量之影響 74 4.1.7 循環次數對上清液流量之影響 78 4.1.8 操作流量對上清液流量之影響 80 4.1.9 管式膜放大化100 L實驗 82 4.2 H2O2-VUV系統將解TOC 86 4.2.1 H2O2濃度對降解效率之影響 86 4.2.2 批次加入H2O2對降解效率之影響 88 4.2.3 循環流速對降解效率之影響 90 4.2.4 無循環系統對降解效率之影響 92 4.3 電解芬頓系統降解TOC 95 4.3.1 批次加入H2O2對降解效率之影響 95 4.3.2 H2O2濃度對降解效率之影響 97 4.3.3 H2O2與FeSO4重量百分比對降解效率之影響 99 第五章 結論與未來展望 101 5.1 結論 101 5.1.1 管式膜系統 101 5.1.2 H2O2-VUV、電解芬頓系統 101 5.2 未來展望 102 5.2.1 管式膜放大化實廠應用 102 5.2.2 降解系統 103 附錄 104 6.1 H2O2-VUV-Mn系統降解TOC 104 6.1.1 雙氧水濃度對礦化率影響 104 6.1.2 觸媒改質比較 105 參考文獻 108

[1] B. Li, S. Ye, I. E. Stewart, S. Alvarez, and B. J. Wiley, “Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%,” Nano letters, vol. 15, no. 10, pp. 6722-6726, 2015.
[2] J. Li, L. Hu, L. Wang, Y. Zhou, G. Grüner, and T. J. Marks, “Organic light-emitting diodes having carbon nanotube anodes,” Nano letters, vol. 6, no. 11, pp. 2472-2477, 2006.
[3] M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical reviews, vol. 110, no. 1, pp. 132-145, 2010.
[4] Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, and N. I. Rabiah, “A highly stretchable, transparent, and conductive polymer,” Science advances, vol. 3, no. 3, pp. e1602076, 2017.
[5] L. Gou, M. Chipara, and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chemistry of Materials, vol. 19, no. 7, pp. 1755-1760, 2007.
[6] T. Gao, P.-S. Huang, J.-K. Lee, and P. W. Leu, “Hierarchical metal nanomesh/microgrid structures for high performance transparent electrodes,” RSC advances, vol. 5, no. 87, pp. 70713-70717, 2015.
[7] 楊明輝, “透明導電模材料與成模技術的正新發展,” 工業材料, vol. 189, 2002.
[8] F. Streintz, “Ueber die elektrische Leitfähigkeit von gepressten Pulvern,” Annalen der Physik, vol. 314, no. 12, pp. 854-885, 1902.
[9] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten,” Zeitschrift für Physik, vol. 139, no. 5, pp. 504-517, 1954.
[10] H. Vanboort, and R. Groth, “Low-pressure sodium lamps with indium oxide filter,” Philips Technical Review, vol. 29, no. 1, pp. 17-&, 1968.
[11] W. He, and C. Ye, “Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review,” Journal of Materials Science & Technology, vol. 31, no. 6, pp. 581-588, 2015.
[12] R. L. Whitby, “Chemical control of graphene architecture: tailoring shape and properties,” ACS nano, vol. 8, no. 10, pp. 9733-9754, 2014.
[13] 陳姿吟、李連忠, “以化學氣相沉積法長大面積之石墨烯,” vol. 1342, 2011.
[14] S. Iijima, “Helical microtubules of graphitic carbon,” nature, vol. 354, no. 6348, pp. 56-58, 1991.
[15] M. Ali, and R. Rubel, “A comparative review of Mg/CNTs and Al/CNTs composite to explore the prospect of bimetallic Mg-Al/CNTs composites,” vol. 7, pp. 217-243, 05/25, 2020.
[16] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x,” Journal of the Chemical Society, Chemical Communications, no. 16, pp. 578-580, 1977.
[17] W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC handbook of chemistry and physics: CRC press, 2016.
[18] M.-H. Chang, H.-A. Cho, Y.-S. Kim, E.-J. Lee, and J.-Y. Kim, “Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1-7, 2014.
[19] Y.-F. Lan, “Indium Tin Oxide Deposition at Ambient Temperature on Flexible Polymer Substrate,” 2010.
[20] 裘性天、黃亭凱, “特殊形貌銅與銀奈米材料製備之簡介,” 化學, vol. 65, no. 1, pp. 9-16, 2007.
[21] Y. Zhou, S. Yu, X. Cui, C. Wang, and Z. Chen, “Formation of silver nanowires by a novel solid− liquid phase Arc discharge method,” Chemistry of materials, vol. 11, no. 3, pp. 545-546, 1999.
[22] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, and Z. Y. Chen, “A novel ultraviolet irradiation photoreduction technique for the preparation of single‐crystal Ag nanorods and Ag dendrites,” Advanced Materials, vol. 11, no. 10, pp. 850-852, 1999.
[23] P. Mohanty, I. Yoon, T. Kang, K. Seo, K. S. Varadwaj, W. Choi, Q.-H. Park, J. P. Ahn, Y. D. Suh, and H. Ihee, “Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering,” Journal of the American Chemical Society, vol. 129, no. 31, pp. 9576-9577, 2007.
[24] C. J. Murphy, and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Advanced Materials, vol. 14, no. 1, pp. 80-82, 2002.
[25] M. F. Meléndrez, C. Medina, F. Solis-Pomar, P. Flores, M. Paulraj, and E. Pérez-Tijerina, “Quality and high yield synthesis of Ag nanowires by microwave-assisted hydrothermal method,” Nanoscale research letters, vol. 10, no. 1, pp. 1-9, 2015.
[26] N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods.,” Chemical Communications, no. 7, pp. 617-618, 2001.
[27] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Advanced materials, vol. 26, no. 39, pp. 6670-6687, 2014.
[28] K. Zhang, Y. Du, and S. Chen, “Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications,” Organic Electronics, vol. 26, pp. 380-385, 2015.
[29] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, “Fabrication of silver nanowire transparent electrodes at room temperature,” Nano research, vol. 4, no. 12, pp. 1215-1222, 2011.
[30] S. J. Lee, Y.-H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T.-W. Lee, and G.-R. Yi, “A roll-to-roll welding process for planarized silver nanowire electrodes,” Nanoscale, vol. 6, no. 20, pp. 11828-11834, 2014.
[31] R. Jarrett, and R. Crook, “Silver nanowire purification and separation by size and shape using multi-pass filtration,” Materials Research Innovations, vol. 20, no. 2, pp. 86-91, 2016.
[32] H. Wang, H. Tang, J. Liang, and Y. Chen, “Dynamic Agitation‐Induced Centrifugal Purification of Nanowires Enabling Transparent Electrodes with 99.2% Transmittance,” Advanced Functional Materials, vol. 28, no. 45, pp. 1804479, 2018.
[33] K. C. Pradel, K. Sohn, and J. Huang, “Cross‐flow purification of nanowires,” Angewandte Chemie International Edition, vol. 50, no. 15, pp. 3412-3416, 2011.
[34] 呂維明, “固液過濾技術 Solid-Liquid Filtration Technology,五南圖書出版,” 2018.
[35] R. Thiruvenkatachari, S. Vigneswaran, and I. S. Moon, “A review on UV/TiO2 photocatalytic oxidation process (Journal Review),” Korean Journal of Chemical Engineering, vol. 25, no. 1, pp. 64-72, 2008.
[36] C. D. Jaeger, and A. J. Bard, “Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems,” Journal of Physical Chemistry, vol. 83, no. 24, pp. 3146-3152, 1979.
[37] S. Guittonneau, J. De Laat, J. Duguet, C. Bonnel, and M. Dore, “Oxidation of parachloronitrobenzene in dilute aqueous solution by O3+ UV and H2O2+ UV: a comparative study,” 1990.
[38] A. Hong, M. E. Zappi, C. H. Kuo, and D. Hill, “Modeling kinetics of illuminated and dark advanced oxidation processes,” Journal of Environmental Engineering, vol. 122, no. 1, pp. 58-62, 1996.
[39] W. Den, K. Fu-Hsiang, and H. Tiao-Yuan, “Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation,” IEEE Transactions on Semiconductor Manufacturing, vol. 15, no. 4, pp. 540-551, 2002.
[40] A. Boutiti, R. Zouaghi, S. E. Bendjabeur, S. Guittonneau, and T. Sehili, “Photodegradation of 1-hexyl-3-methylimidazolium by UV/H2O2 and UV/TiO2: Influence of pH and chloride,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 336, pp. 164-169, 2017/03/01/, 2017.
[41] H. Lin, and H. Zhang, “Treatment of organic pollutants using electro-Fenton and electro-Fenton-like process in aqueous solution,” Progress in Chemistry, vol. 27, no. 8, pp. 1123, 2015.

無法下載圖示 全文公開日期 2032/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE