簡易檢索 / 詳目顯示

研究生: 黃羿霖
Yi-Lin Huang
論文名稱: 缺陷工程用於氧化鈷/石墨烯之氧電催化觸媒開發與鋅空氣電池之應用
Defect engineering for developing oxygen electrocatalyst of cobalt oxide/graphene and its application on zinc air battery
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
林正嵐
Cheng-Lan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 鋅空氣電池缺陷工程雙功能型電催化觸媒複合材料石墨烯
外文關鍵詞: Zinc-air battery, Defect engineering, Bifunctional electrocatalyst, Composite material, Graphene
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功開發出GdxCo3-xO4複合氮摻雜石墨稀(Nitrogen-doping graphene oxide,NG)之雙功能催化劑,並應用於鋅-空氣電池(Zinc Air Battery,ZAB)上。由於作為催化劑的GdxCo3-xO4/NG具有優良的析氧反應(Oxygen Evolution Reaction,OER)及氧還原反應(Oxygen Reduction Reaction,ORR)催化性能,能有效降低ZAB充放電過程中的活化能,使元件有著傑出的效能。在本研究是以NG作為複合材料之載體,並透過結合Gd摻雜Co3O4製備出GdxCo3-xO4/NG,更進一步加強氧氣電催化性能。由於Gd3+中的殼層軌域具有穩定的半填滿電子結構(4f7),可以有效提升電子傳輸性,並且透過Gd3+取代八面體晶格中部分Co3+,有效增加Co3O4晶體內部的氧空缺,從而增強OER/ORR催化能力。
在ORR/OER檢測中,Gd0.8Co2.2O4/NG表現出優越的雙功能催化性能,其電位差(ΔE = E10–E1/2)為0.96 V,並且ORR性能(E1/2 = 0.75)接近於商用型Pt/C催化劑(E1/2 = 0.82)。在CV及EIS電化學檢測更進一步證實Gd0.8Co2.2O4/NG其優異的催化能力。在電子轉移數分析中計算出Gd0.8Co2.2O4/NG為四電子轉移途徑,並從Tafel slope及ECSA分析中,也可以看出Gd0.8Co2.2O4/NG擁有極佳的反應動力學及電化學活性面積表現。在甲醇耐受性及穩定性測試中也展現出長效性能;最後將Gd0.8Co2.2O4/NG及商用觸媒RuO2 + Pt/C應用於鋅-空氣電池,並進行電池性能比較。在開路電壓測試及功率密度檢測中,搭載Gd0.8Co2.2O4/NG元件皆擁有與搭載商用觸媒RuO2 + Pt/C相似之表現;在放電比電容測試中,搭載Gd0.8Co2.2O4/NG元件甚至展示出高於搭載RuO2 + Pt/C元件之儲電容量,並在70小時的充放電穩定性測試中展示出極佳的循環穩定性。


In the present study, we successfully developed a bifunctional catalyst of GdxCo3-xO4 composite nitrogen-doped graphene (NG) and applied to zinc-air battery (ZAB). As the catalyst, GdxCo3-xO4/NG has excellent oxygen evolution reaction (OER) and Oxygen Reduction Reaction (ORR) catalytic ability, it can effectively reduce the activation energy during the charge and discharge process of ZAB, so that the device has outstanding performance. In this study, NG was used as the carrier of the composite material, and GdxCo3-xO4/NG was prepared by combining Gd-doped Co3O4 to further enhance the oxygen electrocatalytic performance. Since the shell orbitals in Gd3+ have a stable half-filled electronic structure (4f7), it can effectively improve electron transport and replace part of Co3+ in the octahedral lattice with Gd3+, effectively increasing the oxygen vacancies inside the Co3O4 crystal, thereby enhancing OER/ORR catalytic ability.
In the ORR/OER test, Gd0.8Co2.2O4/NG exhibited superior bifunctional catalytic performance (ORR/OER) with a potential difference (ΔE) of 0.96 V, while its ORR performance (E1/2 = 0.75) was close to commercial type Pt/C catalyst (E1/2=0.82), and the excellent catalytic ability of Gd0.8Co2.2O4/NG was further confirmed by CV and EIS electrochemical detection; Gd0.8Co2.2O4 was calculated in the electron transfer number analysis /NG is a four-electron transfer pathway, and it can also be seen from the analysis of Tafel slope and electrochemical active surface area (ECSA) that Gd0.8Co2.2O4/NG has excellent reaction kinetics and electrochemical active area performance; The long-term performance was also shown in the acceptance and stability tests; finally, Gd0.8Co2.2O4/NG and commercial catalyst RuO2 + Pt/C were applied to zinc-air batteries, and the battery performance was compared. In the open circuit voltage test and power density test, the components equipped with Gd0.8Co2.2O4/NG have similar performance to those equipped with commercial catalyst RuO2 + Pt/C; in the discharge specific capacitance test, the components equipped with Gd0.8Co2.2O4/NG The device even exhibited higher storage capacity than the RuO2 + Pt/C device, and showed excellent cycle stability in the 70-hour charge-discharge stability test.

摘要 III Abstract IV 總目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 金屬-空氣電池之簡介 3 2.2 鋅-空氣電池之發展歷史 4 2.3 鋅-空氣電池之基本原理 5 2.3.1 鋅-空氣電池之電化學反應 5 2.3.2 空氣陰極反應機制 7 2.3.3 ORR/OER火山圖(Volcano plot) 8 2.4 元件內部介紹 9 2.4.1 陽極(anode)–金屬鋅 9 2.4.2 電解液(Electrolyte)&隔離層(separator) 10 2.4.3 陰極(Cathode)-空氣電極 11 2.5 現今空氣電極觸媒材料發展 12 2.6 空氣電極-電催化觸媒材料 13 2.6.1 尖晶石型金屬氧化物 13 2.6.2 石墨烯(Graphite) 15 2.6.3 尖晶石型金屬氧化物/石墨烯複合材料 17 第三章 實驗 材料與步驟 18 3.1 實驗藥品 18 3.2 實驗器材 19 3.3 實驗步驟 21 3.3.1 強酸(Piranha Solution)的配製與玻璃器皿清洗 21 3.3.2 旋轉電極拋光與清潔 21 3.3.3 空氣電池陰極-電催化觸媒合成 21 3.3.4 電催化觸媒溶液的配製 23 3.3.5 全電池元件組裝 24 3.4 材料結構鑑定與儀器原理 24 3.4.1 X-ray射線繞射儀(XRD) 24 3.4.2 掃描式電子顯微鏡(SEM) 25 3.4.3 穿透式電子顯微鏡(TEM) 26 3.4.4 拉曼光譜(Raman) 27 3.4.5 X-ray光電子能譜(XPS) 27 3.5 電化學分析 29 3.5.1 線性掃描伏安法(LSV) 29 3.5.2 循環伏安法(CV) 30 3.5.3 電化學阻抗分析(EIS) 31 第四章 結果與討論 33 4.1 氮摻雜石墨烯(NG) 34 4.1.1 X射線光電子能譜儀(XPS)分析鑑定 35 4.1.2拉曼光譜分析鑑定(Raman) 36 4.1.3 線性掃描伏安法(LSV)之ORR/OER 效能分析 37 4.2 Gd摻雜Co3O4/NG之缺陷工程策略 39 4.2.1 XRD分析鑑定 40 4.2.2 TEM分析鑑定 41 4.2.3 SEM/EDX分析鑑定 43 4.2.4 拉曼光譜分析鑑定(Raman) 45 4.2.5 X射線光電子能譜儀(XPS)分析鑑定 47 4.2.6 線性掃描伏安法(LSV)之ORR/OER 效能分析 49 4.2.7 各條件之OER/ORR分析與Tafel鑑定 51 4.2.8 循環伏安法(CV)之ORR分析鑑定 54 4.2.9 電化學阻抗(EIS)分析鑑定 55 4.2.10 電化學活性表面積(Electrochemical active surface area)鑑定 57 4.2.11 電子轉移數 (Electron transfer number)分析 58 4.2.12 甲醇耐受性(Ethanol Durability)測試 60 4.2.13 ORR穩定性分析 61 4.2.14 鑭系元素摻雜Co3O4/NG之ORR/OER性能比較 62 4.3 鋅-空氣電池之效能分析與鑑定 65 4.3.1 開路電壓(Open circuit voltage)檢測 65 4.3.2 充放電極化曲線及功率密度(Power density)檢測 66 4.3.3 放電比電容(Discharge specific capacity)測試 67 4.3.4 充放電穩定性測試 69 第五章 結論與未來展望 70 第六章 參考文獻 71

1.SALAMEH, Ziyad M.; CASACCA, Margaret A.; LYNCH, William A. A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversion, 1992, 7.1: 93-98.
2.GARCÍA-PLAZA, M., et al. A Ni–Cd battery model considering state of charge and hysteresis effects. Journal of Power Sources, 2015, 275: 595-604.
3.FETCENKO, M. A., et al. Recent advances in NiMH battery technology. Journal of Power Sources, 2007, 165.2: 544-551.
4.NITTA, Naoki, et al. Li-ion battery materials: present and future. Materials today, 2015, 18.5: 252-264.
5.PAN, Jing, et al. Advanced architectures and relatives of air electrodes in Zn–air batteries. Advanced Science, 2018, 5.4: 1700691.
6.WANG, Lie, et al. A Li–air battery with ultralong cycle life in ambient air. Advanced Materials, 2018, 30.3: 1704378.
7.LEE, Jang‐Soo, et al. Metal–air batteries with high energy density: Li–air versus Zn–air. Advanced Energy Materials, 2011, 1.1: 34-50.
8.GIRISHKUMAR, Girish, et al. Lithium− air battery: promise and challenges. The Journal of Physical Chemistry Letters, 2010, 1.14: 2193-2203.
9.SCROSATI, Bruno. History of lithium batteries. Journal of solid state electrochemistry, 2011, 15.7-8: 1623-1630.
10.GROVE, William Robert. VIII. On the gas voltaic battery.—Experiments made with a view of ascertaining the rationale of its action and its application to eudiometry. Philosophical Transactions of the Royal Society of London, 1843, 133: 91-112.
11.HEISE, George W.; CAHOON, N. C. Fiftieth Anniversary: The Anniversary Issue on Primary Cell Systems: Dry Cells of the Leclanché Type, 1902–1952—A Review. Journal of the Electrochemical Society, 1952, 99.8: 179C.
12.L. Maiché, French Pat., 127069, 1878
13.HEISE, George W.; SCHUMACHER, Erwin A. An Air‐Depolarized Primary Cell with Caustic Alkali Electrolyte. Transactions of the Electrochemical Society, 1932, 62.1: 383.
14.D. Linden, Handbook Of Batteries 3rd Edition, McGraw-Hill, New York, 2002
15.J. A. Strasser and P. Sigmund, Electronics, 1965, 38, 89–94
16.D. Linden, Handbook Of Batteries 4th Edition, McGraw-Hill, New York, 2011
17.GOLDSTEIN, Jonathan; BROWN, Ian; KORETZ, Binyamin. New developments in the Electric Fuel Ltd. zinc/air system. Journal of power sources, 1999, 80.1-2: 171-179.
118.C. S. Johnson, J. T. Vaughey, M. M. Thackeray, T. E. Bofinger and S. A. Hackney, Layered Lithium-Manganese Oxide Electrodes Derived from Rock-Salt LixMnyOz (x + y = z) Precursors, Boston, US, 1998
19.WINTER, Martin, et al. Insertion electrode materials for rechargeable lithium batteries. Advanced materials, 1998, 10.10: 725-763.
20.SPARKES, Clive; LACEY, Neville K. A study of mercuric oxide and zinc-air battery life in hearing aids. The Journal of Laryngology & Otology, 1997, 111.9: 814-819.
21.CHENG, Xin-Bing; ZHANG, Qiang. Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. Journal of Materials Chemistry A, 2015, 3.14: 7207-7209.
22.WANG, Qingsong, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019, 55: 93-114.
23.LI, Yanguang, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature communications, 2013, 4.1: 1805.
24.ZHANG, Jintao, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature nanotechnology, 2015, 10.5: 444-452.
25.WANG, Xiao‐Tong, et al. Redox‐Inert Fe3+ Ions in Octahedral Sites of Co‐Fe Spinel Oxides with Enhanced Oxygen Catalytic Activity for Rechargeable Zinc–Air Batteries. Angewandte Chemie, 2019, 131.38: 13425-13430.
26.ZHAO, Chang‐Xin, et al. A ΔE= 0.63 V Bifunctional Oxygen Electrocatalyst Enables High‐Rate and Long‐Cycling Zinc–Air Batteries. Advanced Materials, 2021, 33.15: 2008606.
27.HAN, Chao, et al. Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6.9: 1812-1827.
28.FU, Jing, et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Advanced materials, 2017, 29.7: 1604685.
29.REN, Shuangshuang, et al. Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8.13: 6144-6182.
30.GU, Peng, et al. Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A, 2017, 5.17: 7651-7666.
31.LIU, Xu, et al. Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery. Small, 2021, 17.48: 2006766.
32.CALLE-VALLEJO, Federico; MARTÍNEZ, José Ignacio; ROSSMEISL, Jan. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13.34: 15639-15643.
33.SEH, Zhi Wei, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355.6321: eaad4998.
34.LIU, Xu, et al. Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery. Small, 2021, 17.48: 2006766.
35.SEH, Zhi Wei, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355.6321: eaad4998.
36.NØRSKOV, Jens Kehlet, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004, 108.46: 17886-17892.
37.DENG, Min, et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries. Journal of Power Sources, 2018, 396: 109-118.
38.LI, Yanguang; LU, Jun. Metal–air batteries: will they be the future electrochemical energy storage device of choice?. ACS Energy Letters, 2017, 2.6: 1370-1377.
39.SEE, Dawn M.; WHITE, Ralph E. Temperature and concentration dependence of the specific conductivity of concentrated solutions of potassium hydroxide. Journal of Chemical & Engineering Data, 1997, 42.6: 1266-1268.
40.R. MAINAR, Aroa, et al. Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. International Journal of Energy Research, 2016, 40.8: 1032-1049.
41.REN, Shuangshuang, et al. Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8.13: 6144-6182.
42.WANG, Zhijuan, et al. Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy, 2016, 30: 368-378.
43.LEWANDOWSKI, Andrzej; SKORUPSKA, Katarzyna; MALINSKA, Jadwiga. Novel poly (vinyl alcohol)–KOH–H2O alkaline polymer electrolyte. Solid state ionics, 2000, 133.3-4: 265-271.
44.KRITZER, Peter; COOK, John Anthony. Nonwovens as separators for alkaline batteries: an overview. Journal of the Electrochemical Society, 2007, 154.5: A481.
45.DEWI, Eniya Listiani, et al. Cationic polysulfonium membrane as separator in zinc–air cell. Journal of power sources, 2003, 115.1: 149-152.
46.PARK, Jaeman, et al. A review of the gas diffusion layer in proton exchange membrane fuel cells: durability and degradation. Applied Energy, 2015, 155: 866-880.
47.FU, Jing, et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Advanced materials, 2017, 29.7: 1604685.
48.YANG, Huan, et al. Advanced oxygen electrocatalysis in energy conversion and storage. Advanced Functional Materials, 2021, 31.12: 2007602.
49.WANG, Hao‐Fan; TANG, Cheng; ZHANG, Qiang. A review of precious‐metal‐free bifunctional oxygen electrocatalysts: rational design and applications in Zn− air batteries. Advanced Functional Materials, 2018, 28.46: 1803329.
50.LUO, Minghe, et al. Interface engineering of air electrocatalysts for rechargeable zinc–air batteries. Advanced Energy Materials, 2021, 11.4: 2002762.
51.FU, Jing, et al. Recent progress in electrically rechargeable zinc–air batteries. Advanced Materials, 2019, 31.31: 1805230.
52.WORKU, Ababay Ketema, et al. Recent progress in MnO2-based oxygen electrocatalysts for rechargeable zinc-air batteries. Materials Today Sustainability, 2021, 13: 100072.
53.ZHANG, Jincheng; YANG, Hongbin; LIU, Bin. Coordination engineering of single‐atom catalysts for the oxygen reduction reaction: a review. Advanced Energy Materials, 2021, 11.3: 2002473.
54.ZHANG, Jian, et al. Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Letters, 2021, 13: 1-30.
55.KUZNETSOV, Denis A., et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule, 2018, 2.2: 225-244.
56.YAN, Dafeng, et al. Defect chemistry of nonprecious‐metal electrocatalysts for oxygen reactions. Advanced materials, 2017, 29.48: 1606459.
57.Cheng N, Liu Q, Tian J, Sun X, He Y, Zhai S, Asiri AM. Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. international journal of hydrogen energy. 2015 Aug 24;40(32):9866-71.
58.Liu J, Jiang L, Zhang T, Jin J, Yuan L, Sun G. Activating Mn3O4 by morphology tailoring for oxygen reduction reaction. Electrochimica Acta. 2016 Jul 1;205:38-44.
59.Yan KL, Qin JF, Lin JH, Dong B, Chi JQ, Liu ZZ, Dai FN, Chai YM, Liu CG. Probing the active sites of Co 3 O 4 for the acidic oxygen evolution reaction by modulating the Co 2+/Co 3+ ratio. Journal of Materials Chemistry A. 2018;6(14):5678-86.
60.SONG, Wenqiao, et al. Ni-and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS applied materials & interfaces, 2016, 8.32: 20802-20813.
61.Zhang Y, Ding F, Deng C, Zhen S, Li X, Xue Y, Yan YM, Sun K. Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catalysis Communications. 2015 Jul 5;67:78-82.
62.LIN, Ziyin, et al. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano energy, 2013, 2.2: 241-248.
63.GONG, Kuanping, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. science, 2009, 323.5915: 760-764.
64.YANG, Zhi, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS nano, 2012, 6.1: 205-211.
65.LIU, Wenjun, et al. Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. Journal of Energy Chemistry, 2021, 57: 428-435.
66.FAWAZ, Mohammed. Bifunctional OER and ORR Electrocatalyst based on cobalt oxide nanocrystals: Towards Rechargeable Metal-air Batteries. 2018. PhD Thesis.
67.HAN, Xiaopeng, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Advanced Energy Materials, 2018, 8.10: 1702222.
68.WANG, Ying, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS nano, 2010, 4.4: 1790-1798.
69.GENG, Dongsheng, et al. Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011, 257.21: 9193-9198.
70.DING, Xiuwei, et al. Novel ternary Co3O4/CeO2/CNTs composites for high-performance broadband electromagnetic wave absorption. Journal of Alloys and Compounds, 2021, 864: 158141.
71.HUANG, Hsin-Hui, et al. Structural evolution of hydrothermally derived reduced graphene oxide. Scientific reports, 2018, 8.1: 6849.
72.LONG, Donghui, et al. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir, 2010, 26.20: 16096-16102.
73.FAREED, S., et al. Tailoring oxygen sensing characteristics of Co3O4 nanostructures through Gd doping. Ceramics International, 2020, 46.7: 9498-9506.
74.ZHANG, Tingting, et al. Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Scientific Reports, 2017, 7.1: 43638.
75.JIANG, Hao, et al. Co Nanoparticles Confined in 3D Nitrogen‐Doped Porous Carbon Foams as Bifunctional Electrocatalysts for Long‐Life Rechargeable Zn–Air Batteries. Small, 2018, 14.13: 1703739.
76.LIU, Di, et al. Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes. Applied Catalysis B: Environmental, 2023, 324: 122293.
77.LI, Meng, et al. Gadolinium‐induced valence structure engineering for enhanced oxygen electrocatalysis. Advanced Energy Materials, 2020, 10.10: 1903833.
78.LI, Jiabao, et al. Heteroatom-induced electronic structure modulation of vertically oriented oxygen vacancy-rich NiFe layered double oxide nanoflakes to boost bifunctional catalytic activity in Li–O2 battery. ACS applied materials & interfaces, 2019, 11.33: 29868-29878.
79.HUANG, Changfei, et al. Mn-incorporated Co3O4 bifunctional electrocatalysts for zinc-air battery application: An experimental and DFT study. Applied Catalysis B: Environmental, 2022, 319: 121909.
80.LI, Meng, et al. Gadolinium‐induced valence structure engineering for enhanced oxygen electrocatalysis. Advanced Energy Materials, 2020, 10.10: 1903833.
81.REIKOWSKI, Finn, et al. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution. Acs Catalysis, 2019, 9.5: 3811-3821.
82.GORLIN, Yelena; JARAMILLO, Thomas F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. Journal of the American Chemical Society, 2010, 132.39: 13612-13614.
83.DU, Chunyu, et al. Rotating disk electrode method. In: Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier, 2014. p. 171-198.
84.MOUSAVI, Hanieh, et al. Methanol Tolerant Oxygen Reduction Reaction Electrocatalysis using Size‐Specific Triphenylphosphine‐Ligated Gold Nanoclusters. ChemNanoMat, 2022, 8.7: e202200122..
85.KIM, Hyun-Jong, et al. PtRu/C-Au/TiO2 electrocatalyst for a direct methanol fuel cell. Journal of power sources, 2006, 159.1: 484-490.
86.MEIER, Josef C., et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein journal of nanotechnology, 2014, 5.1: 44-67.
87.ZHU, Wen-Jun, et al. A density functional theory study of small Au nanoparticles at CeO2 surfaces. Catalysis today, 2011, 165.1: 19-24.
88.LIU, Qin, et al. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn‐air batteries. Advanced Materials, 2016, 28.15: 3000-3006.

無法下載圖示 全文公開日期 2028/08/16 (校內網路)
全文公開日期 2028/08/16 (校外網路)
全文公開日期 2028/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE