簡易檢索 / 詳目顯示

研究生: 簡琬蓁
Wan-Chen Chien
論文名稱: 磁性複合材料磁性行為之研究-S.T.E.P.技術之應用
A study on the magnetization behavior of magnetic composite particles by S.T.E.P. technology
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
江宗潁
none
游進陽
none
呂政錡
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 139
中文關鍵詞: 鍶鐵氧體硬磁材料S.T.E.P.技術
外文關鍵詞: strontium ferrite, hard magnetic materials, S.T.E.P technology
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用S.T.E.P.技術研究磁性粒子之磁性行為。首先,一開始先使用熱重損失分析儀、黏度計、X光繞射儀探察原物料基本性質。接著,第一部分為使用鍶鐵氧體(SrFe12O19)磁性粒子,混摻於基材環氧樹脂(Epoxy resin)、聚氨基甲酸酯(Polyurethane),於粒子分散性分析儀(LUMiSizer)加裝磁性載具配件組,分析鍶鐵氧體的磁化行為,探究鍶鐵氧體因磁場、離心等效應進而產生的特性。第二部份為將鍶鐵氧體混摻於基材環氧樹脂、聚氨基甲酸酯中固化後,藉由熱重損失分析儀、熱示差分析儀、超導量子干涉磁量儀、掃描式電子顯微鏡、X光繞射儀,進而探究其熱性、磁性、微觀下之特性。


    This study is on the magnetization behavior of magnetic composite particles by using S.T.E.P. technology. First, we used the TGA, viscometer and X-RD to determine the basic properties of raw materials. Next, the first part is the use of the strontium ferrite (SrFe12O19) powder individually mixed-doped on the substrate of epoxy resin and polyurethane, then we used LUMiSizer installation of LUM magnetic cell holder to analysis the magnetic composite particles behavior and the characteristic relation magnetization and centrifugal effect of magnetic composite particles. The second part of the individually mixed-doped strontium ferrite substrate in epoxy resin and polyurethane after curing, we learned the thermal properties with TGA, DSC, the microscopic properties with SEM, X-RD, the magnetic properties with SQUID.

    誌謝I 摘要IV AbstractV 圖目錄IX 表目錄XIII 第一章 緒論1 1.1 前言1 1.2研究背景2 1.3研究動機與目的3 第二章 文獻回顧4 2.1磁性材料4 2.1.1磁性4 2.1.2磁性材料種類5 2.1.2硬磁材料10 2.1.3磁性高分子材料11 2.2 鐵氧磁體12 2.2.1鐵氧體之歷史沿革12 2.2.2鐵氧體製程13 2.2.3鐵氧體之分類15 2.2.4鐵氧磁體之磁特性18 2.3粒子分散性分析儀 (LUMisizer○R)20 2.3.1粒子分散性分析儀20 2.3.2粒子分散性分析儀附件磁性配組(LUM magnetic cell holder)23 第三章 實驗27 3.1實驗流程27 3.2實驗材料28 3.3實驗配方29 3.4試樣製作31 3.5儀器原理及操作條件32 3.5.1 粒子分散性分析儀 (LUMisizer○R)32 3.5.2 X光繞射儀 (X-Ray Diffraction;XRD)33 3.5.3超導量子干涉磁量儀 (SQUID)34 3.5.4掃描式電子顯微鏡 (SEM)34 3.5.5熱重損失分析儀 (TGA)35 3.5.6熱示差掃描量熱儀 (DSC)36 3.5.7 布式黏度計(BrookField )37 3.5.8 熱機械分析儀(Thermo Mechanical Analyzer;TMA)錯誤! 尚未定義書籤。 第四章 結果與討論39 4.1原物料之分析鑑定39 4.1.1熱性質39 4.1.2型態分析42 4.1.3流變分析45 4.2 LUM之探討47 4.2.1 環氧樹酯混摻鍶鐵氧體在LUM之分析47 4.2.2 聚氨基甲酸酯混摻鍶鐵氧體在LUM之分析71 4.3熱性質分析47 4.4型態分析102 4.5電磁性能108 第五章 結論114

    【1】Cullity, B. D.; C. D. Graham (2008). Introduction to Magnetic Materials. Wiley-IEEE. p. 485. ISBN 0-471-47741-9.
    【2】T. M. Whitney, P. C. Searson, J. S. Jiang, and C. L. Chien, Fabrication and Magnetic Properties of Arrays of Metallic Nanowires, Science 3 September 1993: 1316-1319.
    【3】Whitney T M, Jiang J S, Searson P C, et al. Fabrication and magnetic properties of array of metallic nanowires [J]. Science, 1993, 261 (3): 1316 - 1319.Meier, J.; Doudin, B.; Ansermet, J.-Ph., Magnetic Properties Of Nanosized Wires,Journal of Applied Physics, Volume 79, Issue 8, April 15, 1996, pp.6010-6012
    【4】Meier J , Doudin B, Ansermet J Ph. Magnetic properties of nanosized wires [J]. Appl.Phys, 1996 , 79 (8) : 6010 - 6012.
    【5】Park I W, Yoon M, Kim Y M, et al . Synthesis of cobalt nano2 particles in polymeric membrane and their magnetic anisotropy [J ] . Journal of Magnetism and Magnet ic Materials , 2004 ,272 - 276 ( supplement) : 1413 - 1414.
    【6】Park I W , Yoon M , Kim Y M , et al . Magnetic properties and microst ructure of cobalt nanoparticles in a polymer film [ J ] . Solid State Communications , 2003 , 126 (7) : 385 - 389.
    【7】Shibata Mit suhiro , Beniya Hiroshi , Yosomiya Ryutoku , et al .Magnetic properties of metal layer deposited by reduction ofmetal ions contained in polymer wit h applying magnetic field[J ] . J ournal of Pol ymer Research , 2000 , 7 (1) : 57 - 61.
    【8】Huang C Y, Mo W W. The effect of attached f ragment s ondense layer of elect roless Ni/ P deposition on t he elect romag2netic interference shielding effectiveness of carbon fibre/ acry2lonit rile2butadiene2styrene composites [ J ] . S ur f ace andCoatings Technology , 2002 , 154 (1) : 55 - 62.
    【9】Khoo M , Liu C. Sensors and actuators [J ] . Physical , 2001 ,89 (3) : 259 - 266.
    【10】Tao C Y, Wu L , Du J , et al . Magnetic polymer material s :Progress in research and application [ J ] . Materials Review ,2003 , 17 (4) : 50 - 53.
    【11】William D. Callister, Jr, “Materials science and engineering an introduction”, 4rded., John Wiley & Sons, Inc., 1996, pp.659-687.
    【12】Joseph P. Hornak, Ph.D., Basics of NMR, Copyright © 1997-99
    【13】Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ, Dynamic imaging with lanthanide chelates in normal brain:contrast due to magnetic susceptibility effects. Magn Reson Med 1988; 6:164-174
    【14】Rosen BR, Belliveau JW, Vevea JM, Brady TJ, Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265
    【15】Frahm J, Merboldt KD, Hanicke W, Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 1993;29:139-144
    【16】B.D.Cullity(1972),Introduction to Magnetic Materials,Addison Wesley,New York。
    【17】C.Kittel(1997),Introduction of Solid State Phys,7th ed,John Wiley & Sons inc,New York。【15】Kittel, Charles. Introduction to Solid State Physics 6th. John Wiley & Sons. 1986: pp. 340–344. ISBN 0-471-87474-4.
    【18】K. H. Fischer; J. A. Hertz, Spin Glasses. (Cambridge Studies in Magnetism) 1993. ISBN 9780521447775.
    【19】L. Néel, Propriétées magnétiques des ferrites; Férrimagnétisme et antiferromagnétisme, Annales de Physique (Paris) 3, 137–198 (1948).
    【20】J.C. Slonczewski, J. Magn. Magn. Mat. 159, L1 ,1996.
    【21】張文成,洪英彰,”磁性材料”,粉末冶金技術手冊,中華民國粉末冶金協會, 1994, pp.458-484.
    【22】William D. Callister, Jr, “Materials science and engineering an introduction”, 4rd ed., John Wiley & Sons, Inc., 1996, pp.659-687.
    【23】J. M. D. Coey. Magnetism and Magnetic Materials. Cambridge University Press, 2009. ISBN 978-0-521-816144-4.
    【24】Meixiang Wan, Chenhai Zhang∗, Changjiang Li∗, Room-temperature organic ferromagnet of Schiff-base polymers with iron(II) sulfate, Solid State Communications Volume 87, Issue 5, August 1993, Pages 379–385, doi:10.1016/0038-1098(93)90781-H
    【25】J. L. Snoek, Philips Gloeilampen Fabrieken, Eindhoven˙Holland. Elsevier Publishing Co., New York 1947. New developments in ferromagnetic materials. *J. L. Snoek: New Developments in ferromagnetic materials, Amsterdam New York 1947.Also: Philips Technical Review 8, 353, 1946.
    【26】J.J. Went, G.W. Rathenau, E.W. Gorter, G.W. Van Oosterhout Philips Tech. Rev., 13 (1952), p. 194
    【27】A. Goldman, Modern Ferrite Technology, New York: Van Nostrand Reinhold, (1990) p.21-44.
    【28】P. Reijnen, The formation of ferrites from the metal oxides, in Science of Ceramics, Vol. 3, A. Stewart (ed.), Academic Press, New York, (1967) p. 171.
    【29】S. L. Blum and P. C. Li, “Kinetics of nickel ferrite formation”, J. Am. Ceram. Soc., 44 (1961) 611-617.
    【30】L. C. F. Blackman, “On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures”, J. Am. Ceram. Soc., 42 (1959) 143-145.
    【31】D. Elwell, R. Parker, and C. J. Tinsley, “The formation of nickel ferrite”, Solid State Comm., 4 (1966) 69-71.
    【32】P. Reijnen, The formation of ferrites from the metal oxides, in Science of Ceramics, Vol. 3, A. Stewart (ed.), Academic Press, New York, (1967) p. 245-261.
    【33】P. Reijnen, Investigation into solid state reactions and equilibria in the system MgO-FeO-Fe2O3, Fifth Intern. Symp. Reactivity Solids, Munich, 1964, Elsevier, Amsterdam, (1965) p. 562-571.
    【34】G. M. Chow and K. E. Gonsalves, in Nanometerials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata ed., Ch. 3, Philadelphia, PA: Institute of Physics Pub. Bristol, (1996).
    【35】N. Ichinose, Y. Ozaki, and S. Kashū, in Superfine Particle Technology, Ch. 3 and Ch. 4, Springer-Verlag London Limited, (1992).
    【36】Matsui, I. Japanese Journal of Applied Physics, 2006,45(10B), 8302.
    【37】D. Thi Minh Hue, T. Viet Dung, B. Doan Huan, P. Manh Huong, and H. Dang Chinh, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 025015 ( 2012).
    【38】X. Obradors, X. Solans, A. Collomb, D. Samaras, J. Rodriguez, M. Pernet, and M. Font-Altaba, J. Solid State Chem. 72, 218–224 ( 1988).CrossRef,CAS,Web of Science® Times Cited: 60,ADS
    【39】P. Xu, X. Han, and M. Wang, J. Phys. Chem. C 111, 5866–5870 ( 2007).CrossRef,CAS,Web of Science® Times Cited: 80
    【40】R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042–1045 ( 1999).CrossRef,CAS,Web of Science® Times Cited: 772,ADS
    【41】K. Haneda and H. Kojima, J. Appl. Phys. 44, 3760–3762 ( 1973).CrossRef,CAS,Web of Science® Times Cited: 56,ADS
    【42】R. Sharma, R. Chandra Agarwala, and V. Agarwala, J. Magn. Magn. Mater. 312, 117–125 ( 2007).CrossRef,CAS,Web of Science® Times Cited: 11,ADS
    【43】M.-L. Wang, Z.-W. Shih, and C.-H. Lin, J. Cryst. Growth 114, 435–445 ( 1991).CrossRef,CAS,Web of Science® Times Cited: 35,ADS
    【44】Z. Durmus, H. Sozeri, M. S. Toprak, and A. Baykal, J. Supercond. Nov. Magn. 25, 1957–1963 ( 2012).CrossRef,CAS,Web of Science® Times Cited: 4
    【45】H. Sözeri, İ. Küçük, and H. Özkan, J. Magn. Magn. Mater. 323, 1799–1804 ( 2011).CrossRef,CAS,Web of Science® Times Cited: 25,ADS
    【46】H. Sözeri, A. Baykal, and B. Ünal, Phys. Status Solidi A 209, 2002–2013 ( 2012).Direct Link:AbstractFull Article (HTML)PDF(1743K)ReferencesWeb of Science® Times Cited: 10
    【47】A. Arab, M. R. Mardaneh, and M. H. Yousefi, J. Magn. Magn. Mater. 374, 80–84 ( 2015).CrossRef,CAS,Web of Science® Times Cited: 2,ADS
    【48】F. Sánchez-De Jesús, A. M. Bolarín-Miró, C. A. Cortés-Escobedo, R. Valenzuela, and S. Ammar, Ceram. Int. 40, 4033–4038 ( 2014).CrossRef,CAS,Web of Science® Times Cited: 9
    【49】J. Ding, D. Maurice, W. F. Miao, P. G. McCormick, and R. Street, J. Magn. Magn. Mater. 150, 417–420 ( 1995).CrossRef,CAS,Web of Science® Times Cited: 49,ADS
    【50】Z. Jin, W. Tang, J. Zhang, H. Lin, and Y. Du, J. Magn. Magn. Mater. 182, 231–237 ( 1998).CrossRef,CAS,Web of Science® Times Cited: 37,ADS
    【51】R. Buscall, The elastic properties of structured dispersions: A simple centrifuge method of examination, Colloids and Surfaces, vol. 5, pp. 269-283, 1982.
    【52】T. Gilanyi, G. Horvath-Szabo, and E. Wolfram, Determination of the osmotic pressure of latex dispersions by a thin layer centrifuge method, Colloids and Surfaces, vol. 18, pp. 283-291, 1986.
    【53】E. Tombacz, I. Deer, and I. Dekany, Compression study on hydrophobic layered silicates dispersed in organic liquid mixtures, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 71, pp. 269-276, 1993.
    【54】E. Tombacz, B. Horvath, and I. Abraham, Compression study on lamellar particles dispersed in electrolyte solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 71, pp. 277-285, 1993.
    【55】S. Tcholakova, N. D. Denkov, I. B. Ivanov, and B. Campbell, Coalescence in β-Lactoglobulin-Stabilized Emulsions:  Effects of Protein Adsorption and Drop Size, Langmuir, vol. 18, pp. 8960-8971, 2002/11/01 2002.
    【56】T. Svedberg and J. B. Nichols, DETERMINATION OF SIZE AND DISTRIBUTION OF SIZE OF PARTICLE BY CENTRIFUGAL METHODS, Journal of the American Chemical Society, vol. 45, pp. 2910-2917, 1923/12/01 1923.
    【57】T. Svedberg and H. Rinde, THE ULTRA-CENTRIFUGE, A NEW INSTRUMENT FOR THE DETERMINATION OF SIZE AND DISTRIBUTION OF SIZE OF PARTICLE IN AMICROSCOPIC COLLOIDS, Journal of the American Chemical Society, vol. 46, pp. 2677-2693, 1924/12/01 1924.
    【58】T. Svedberg, The Ultracentrifuge and Its Field of Research, Industrial & Engineering Chemistry Analytical Edition, vol. 10, pp. 113-127, 1938/03/01 1938.
    【59】W. Machtle, "Coupling particle size distribution technique. A new ultracentrifuge technique for determination of the particle size distribution of extremely broad distributed dispersions," Die Angewandte Makromolekulare Chemie, vol. 162, pp. 35-52, 1988.
    【60】V. Mittal, "Characterization of advanced morphologies in polymer dispersions by AUC and HDC," Colloid & Polymer Science, vol. 288, pp. 25-35, 2010.
    【61】V. Mittal, "Sedimentation analysis of organic–inorganic hybrid colloids," Colloid & Polymer Science, vol. 288, pp. 621-630, 2010.
    【62】V. Mittal and M. D. Lechner, "Size and density dependent sedimentation analysis of advanced nanoparticle systems," Journal of Colloid and Interface Science, vol. 346, pp. 378-383, 2010.
    【63】H. Colfen and T. Pauck, Determination of particle size distributions with angstrom resolution, Colloid & Polymer Science, vol. 275, pp. 175-180, 1997.
    【64】T. Sobisch, D. Lerche, Interaction between tailored particle interfaces characterized by analytical centrifugation, Chemistry Preprint Archive 2003 (7), 198-218
    【65】D.Lerche,T. Sobisch, Consolidation of concentrated dispersions of nano and micro particles determined by analytical centrifugation,Particulate System analysis,Stratford-upon-Avon,21-23rdSeptember 2005
    【66】G. Mie, Beiträge zur Optik trüber Medien. Speziell kolloidaler Goldlösungen,Ann.Phys 1908,25,377-452.
    【67】H.C. van de Hulst, Light Scattering by smell particles,Wiley, New York,1957.
    【68】D.Lerche,T. Sobisch, Consolidation of concentrated dispersions of nano and micro particles determined by analytical centrifugation,Particulate System analysis,Stratford-upon-Avon,21-23rdSeptember 2005
    【69】T. Sobisch,D. Lerche, Interaction between tailored particle interfaces characterized by analytical centrifugation, Chemistry Preprint Archive, volume 2003, issue 7,pp.198-218
    【70】D.Lerche, Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field,J. Dispersion Sci. Techn.2002,23,699-709
    【71】H. J. Kamack, Particle Size Determination by Centrifugal Sedimentation, Anal. Chem.1951,23,844-850
    【72】A. S. Popel, "Hydrodynamics of suspensions," Fluid Dynamics, vol. 4, pp. 14-18, 1969.
    【73】D. Frömer and D. Lerche, "An experimental approach to the study of the sedimentation of dispersed particles in a centrifugal field," Archive of Applied Mechanics, vol. 72, pp. 85-95, 2002.
    【74】R. Di Felice, "The voidage function for fluid-particle interaction systems," International Journal of Multiphase Flow, vol. 20, pp. 153-159, 1994.
    【75】G. Anestis and W. Schneider, "Application of the theory of kinematic waves to the centrifugation of suspensions," Archive of Applied Mechanics, vol. 53, pp. 399-407, 1983.
    【76】G. J. Kynch, "A theory of sedimentation," Transactions of the Faraday Society, vol. 48, pp. 166-176, 1952.
    【77】R. Bürger, "Phenomenological foundation and mathematical theory of sedimentation–consolidation processes," Chemical Engineering Journal, vol. 80, pp. 177-188, 2000.
    【78】V. V. Morariu, T. Simplaceanu, M. Ionica, and P. T. Frangopol, "Packing of human erythrocytes in a centrifugal field," Journal of Biological Physics, vol. 14, pp. 73-76, 1986.
    【79】Lerche D. Journal of Dispersion Science and Technology 2002;23(5):699-709.
    【80】Sobisch T and Lerche D. Chemie Ingenieur Technik 2008;80(3):393-397.
    【81】Badolato G, Aguilar F, Schuchmann H, Sobisch T, and Lerche D. Evaluation of Long Term Stability of Model Emulsions by Multisample Analytical Centrifugation Surface and Interfacial Forces – From Fundamentals to Applications. In: Auernhammer G, Butt H-J, and Vollmer D, editors., vol. 134: Springer Berlin / Heidelberg, 2008. pp. 66-73.
    【82】C. Eichholza, J. Knollb, D. Lerche , H. Nirschlb, "Investigations on the magnetization behavior of magnetic composite particles," Journal of Magnetism and Magnetic Materials, Volume 368, November 2014, Pages 139–148
    【83】J.R. Liua,R.Y.Honga, W.G. Fengc, D. Badamid, Y.Q. Wang “Large-scale production of strontium ferrite bymolten-salt-assisted coprecipitation” in Powder Technology 262:142–149 · August 2014
    【84】Motional Correlation Times of Nitroxide Spin Labels and Spin Probes in an Amine-Cured Epoxy Resin: Solvent Dependence I. M. Brown* and T. C. Sandreczki McDonnell Douglas Research Laboratories, St. Louis, Missouri 63166. Received December 17, 1984

    無法下載圖示 全文公開日期 2021/08/25 (校內網路)
    全文公開日期 2046/08/25 (校外網路)
    全文公開日期 2046/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE