簡易檢索 / 詳目顯示

研究生: 陳俊霖
Chun-Lin Chen
論文名稱: 具備最佳頻率追蹤之鋰離子電池弦波電流充電器研製
Sinusoidal Charger with Optimized Frequency Tracking for Li-ion Batteries
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
羅一峰
Yi-Feng Luo
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 99
中文關鍵詞: 弦波電流充電鋰離子電池快速充電技術線上最佳阻抗追蹤
外文關鍵詞: Sinusoidal Charging, Li-ion Batteries, Fast Charging Technique, On-line Optimized Impedance Tracking
相關次數: 點閱:183下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在研製一可追蹤鋰離子電池最佳頻率的弦波電流充電器。本論文首先針對各種不同型號以及不同老化程度之鋰離子電池進行最佳阻抗頻率追蹤,以期達到縮短充電時間以及增加充電效率之目標。本論文所開發之充電器其數位控制核心使用德州儀器公司所產的F280049C控制器,並利用Powell 演算法在電池充電容量為0%、15%與30%時快速搜尋最佳弦波充電電流頻率,以確保充電時的阻抗最低。本充電器電路架構使用場效電晶體作為電壓電流轉換器,並透過數位有限脈衝響應濾波器與比例積分控制器來穩定充電電流,本充電機可提供最大21W 充電功率。實驗結果證明所提的弦波電流充電方法相較於傳統的定電流定電壓充電法,可縮短3.66%充電時間,降低1.08%充電損失以及減少27.16%溫升。


    The purpose of this thesis is to develop a sinusoidal charger that can track the optimized frequency of Li-ion batteries. In this study, the optimized AC impedance frequency tracking is firstly carried out for various types of lithium-ion batteries with different aging degrees to achieve the goal of shortening the charging time and increasing the charging efficiency. The digital control core of the charger developed in this thesis uses the F280049C digital signal controller (DSC) produced by Texas Instruments and adopts the Powell algorithm to quickly search for the best sinusoidal charging current frequency when the battery state-of-charge (SOC) is 0%, 15% and 30%, which ensures the lowest impedance during charging. The proposed prototyping circuit uses field effect transistors as voltage-to-current converters and utilizes digital finite impulse response filters and proportional-integral controllers to stabilize
    the charging current. The charger can provide a maximum charging power of 21W. The experimental results show that the proposed sinusoidal charger can shorten the charging time by 3.66%, reduce the charging loss by 1.08% and reduce the temperature rise by 27.16% compared with the traditional constant current and constant voltage charging method.

    摘要 ............................................................................................................. i Abstract ...................................................................................................... ii 誌謝 ........................................................................................................... iii 目錄 ............................................................................................................. v 圖目錄 ..................................................................................................... viii 表目錄 ...................................................................................................... xii 第一章 緒論 ........................................................................................... 1 1.1 研究背景與目標 ....................................................................... 1 1.2 文獻探討 ................................................................................... 2 1.3 論文大綱 ................................................................................... 3 第二章 鋰離子電池與充電技術介紹 ................................................... 4 2.1 鋰離子電池介紹 ....................................................................... 4 2.2 二次電池專有名詞介紹 ............................................................. 4 2.3 二次電池充電技術介紹 ............................................................. 7 2.3.1 定電流-定電壓充電法(CCCV) ...................................... 7 2.3.2 衍生型定電流-定電壓充電法 ....................................... 8 2.3.3 脈波充電法(Pulse Charging) ........................................ 10 2.3.4 弦波充電法 ................................................................... 10 2.4 本文選用電池介紹 ................................................................... 11 第三章 鋰離子電池建模與電化學阻抗介紹 ..................................... 15 3.1 鋰離子電池等效電路模型 ....................................................... 15 3.1.1 線性電池等效電路模型 ............................................... 15 3.1.2 戴維寧電池等效電路模型 ........................................... 16 3.1.3 鋰離子電池交流阻抗模型 ........................................... 16 vi 3.2 鋰離子電池交流阻抗分析與量測模組介紹 ........................... 17 第四章 弦波充電機系統架構 ............................................................. 19 4.1 硬體架構圖 ............................................................................... 19 4.2 波形產生器與電池充電電路介紹 ........................................... 20 4.4 韌體程式流程圖 ....................................................................... 22 4.5 韌體主要功能介紹 ................................................................... 23 4.5.1 通用非同步收發器 ........................................................ 23 4.5.2 串列周邊介面 ................................................................ 24 4.5.3 有限脈衝響應濾波器 .................................................... 24 4.5.4 比例積分控制器 ............................................................ 25 4.6 量測驗證平台 ........................................................................... 25 第五章 最佳化演算法 ......................................................................... 28 5.1 最佳化演算法分類 ................................................................... 28 5.2 預取樣二次近似法 ................................................................... 30 5.3 預取樣雙斜率法 ....................................................................... 33 5.4 變步擾動觀察法 ....................................................................... 36 5.5 Powell 法 .................................................................................... 39 第六章 模擬與實驗結果 ..................................................................... 42 6.1 模擬結果 .................................................................................... 42 6.1.1 模擬平台介紹 ................................................................ 42 6.1.2 預取樣二次近似法模擬結果 ........................................ 45 6.1.3 預取樣雙斜率法模擬結果 ............................................ 45 6.1.4 變步擾動觀察法模擬結果 ............................................ 45 6.1.5 Powell 法模擬結果 ......................................................... 46 6.1.6 四種演算法模擬結果比較 ............................................ 46 vii 6.2 實驗結果 ................................................................................... 52 6.2.1 實驗儀器與實驗條件說明 ............................................ 52 6.2.2 充電電壓與充電電流曲線 ............................................ 54 6.2.3 充電電流波形 ................................................................ 57 6.2.4 鋰電池內阻與剩餘容量關係 ........................................ 58 6.2.5 充電損失與電池剩餘容量關係 .................................... 59 第七章 結論與未來展望 ..................................................................... 62 7.1 結論............................................................................................ 62 7.2 未來展望 ................................................................................... 63 參考文獻 ................................................................................................... 64 附錄一 最低阻抗頻率搜尋模擬結果 .................................................... 67 附錄1.1 預取樣二次近似法模擬結果 .................................. 67 附錄1.2 預取樣雙斜率法模擬結果 ...................................... 71 附錄1.3 變步擾動觀察法模擬結果 ...................................... 75 附錄1.4 Powell 法模擬結果 ................................................... 79 附錄二 實驗結果溫度資料 .................................................................... 83

    [1] L. R. Chen, S. L. Wu, D. T. Shieh and T. R. Chen, “Sinusoidal-Ripple-
    Current Charging Strategy and Optimal Charging Frequency Study for
    Li-Ion Batteries”, IEEE Transaction on Industrial Electronics., vol. 60,
    no.1, pp. 88-97, Jan. 2013.
    [2] R. M. Lewis, V. Torczon and M. W. Trosset, “Direct search methods:
    then and now”, J. Computational and Applied Mathematics, vol. 124,
    no.1-2, pp. 191-207, Dec. 2000.
    [3] P. H. L. Notten, J.H.G. Op het Veld and J.R.G van Beek,
    “Boostcharging Li-ion batteries: A challenging new charging concept”,
    J. Power Sources, vol. 145, no.1, pp.89-94, July 2005.
    [4] A. B. Khan, V. L. Pham, T. T. Nguyen and W. Choi, “Multistage
    constant-current charging method for Li-Ion batteries”, IEEE
    Transportation Electrification Conference and Expo, Asia-Pacific
    (ITEC Asia-Pacific), pp.381-385, June 2016.
    [5] L. R. Chen, “A design of an optimal battery pulse charge system by
    frequency-varied technique,” IEEE Transactions on Industrial
    Electronics, vol. 54, no.1, pp.398-405, Feb. 2007.
    [6] P. T. Chen, F.H Yang, Z. T. Cao, J. M. Jhang, H. M. Gao, M. H. Yang
    and K. D. Huang, “Reviving Aged lithium-ion Batteries and
    Prolonging their Cycle Life by Sinusoidal Waveform Charging
    Strategy”, Batteries and Supercaps, vol. 2, pp.673-677, 2019
    [7] A. A. Hussein, A. A. Fardoun and S. S. Stephen, “An Online
    Frequency Tracking Algorithm Using Terminal Voltage Spectroscopy
    for Battery Optimal Charging”, J. IEEE Transactions on Sustainable
    Energy, vol. 7, no. 1, Jan. 2016.
    [8] A. Jain, C. Jain, B. Singh, K. A. Haddad and A. Chandra, “A dual
    tangent based algorithm for maximum power point tracking of solar
    65
    PV systems”, IECON2015 – 41st Annual Conference of the IEEE
    Industrial Electronics Society, pp. 601-606, Nov. 2015.
    [9] G. Ge, K. Shen, M. Yang and X. Peng, “Powell-based Cuckoo Search
    Algorithm”, 15th IEEE Conference on Industrial Electronics and
    Applications (ICIEA), pp. 490-494, 2020.
    [10] Moli Energy Corp., “Model INR-18650-P26A Lithium-ion
    Rechargeable Battery”, datasheet, 2021.
    [11] 屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,冶金工
    業出版社,2006 年5 月。
    [12] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure and D. L. Wood,
    “The state of understanding of the lithium-ion-battery graphite solid
    electrolyte interphase (SEI) and its relationship to formation cycling”,
    Carbon, vol. 105, pp. 52-76, Aug. 2016.
    [13] Y. K. Liu, K. C. Ho, Y. H. Liu and S. C. Wang, “Search for the Optimal
    Charging Pattern of Multi-stage Constant Current Charging Method
    Using Particle Swarm Optimization”, 2018 7th International Congress
    on Advanced Applied Informatics (IIAI-AAI), pp. 536-541, July 2018.
    [14] S. C. Wang and Y. H. Liu, "A PSO-based fuzzy-controlled searching
    for the optimal charge pattern of Li-ion batteries", IEEE Transactions
    on Industrial Electronics, vol. 62, no. 5, pp. 2983-2993, May 2015.
    [15] Y. H. Liu and Y. F. Luo, "Search for an optimal rapid-charging pattern
    for Li-ion batteries using the Taguchi approach", IEEE Transactions
    on Industrial Electronics, vol. 57, no. 12, pp. 3963-3971, Dec. 2010.
    [16] 陳品行, 「基於剩餘容量之最佳化五階段定電流充電法之研究」,
    國立臺灣科技大學碩士論文,2021。
    [17]L. R. Chen, “A Design of A Li-ion Battery Duty-Varied Pulse Charger”,
    IEEE Industrial Electronics Society Conference (IECON), pp. 480-487,
    Dec. 2007.
    66
    [18] C. M. Lai, J. The, Y. H. Cheng and Y. H. Li “A reflex-charging based
    bidirectional DC charger for light electric vehicle and DC-microgrids”,
    IEEE Region 10 Conference (TENCON), pp.280-284, Nov. 2017.
    [19] Y. D. Lee and S. Y. Park, “Electrochemical State-Based Sinusoidal
    Ripple Current Charging Control”, IEEE Transactions on Power
    Electronics, vol. 30, no. 8, Aug. 20015.
    [20] F. Saidani, F. X. Hutter, R. G. Scurtu, W. Braunwarth, and J. N.
    Burghartz, “Lithium-ion battery models: a comparative study and a
    model-based powerline communication,” Advances in radio science,
    vol. 15, no. 1, pp. 83-91, Sep 2017.

    QR CODE