簡易檢索 / 詳目顯示

研究生: 郭亮吟
Liang-yin Kuo
論文名稱: 高穩定錫碳複合材料於鋰離子電池陽極之應用
Highly Stable Sn-C Nanocomposite as an Anode Material for Lithium ion Batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
周宏隆
Hung-Lung Chou
鄭銘堯
Ming-Yao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 133
中文關鍵詞: 鋰離子電池錫碳複合物水熱法
外文關鍵詞: Lithium ion batteries, Sn/carbon composites, Hydrothermal process
相關次數: 點閱:255下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文中首先以微米級錫金屬為前驅物,均勻散佈於葡萄糖水溶液後,於水熱環境中進行反應,製備出奈米級SnOx/C複合材料;再利用溶液法於材料中沉積金屬添加物,高溫處理後形成SnOx/C @ M ( M = Fe, Co, Ni, Cu, Al2O3),並從中探討添加物含量、種類與製備條件對材料物性以及其電化學表現的影響。
    第一部分探討銅比例對SnOx/C @ M複合材料之物性及電化學特性之影響。本研究進行1%、3%、5%三種銅比例,發現1%與3%含量下,材料顆粒粒徑較小且分布較均勻。另外,以電流密度50 mA/g及電壓範圍為0.005-3.0 V下,進行電化學測試。發現含1%銅的材料首圈放電電容量為879 mAh/g,第一圈庫倫效率為66%,且於長循環測試下,第50圈電容維持率為72%。而添加3% 銅與5% 銅的樣品其首圈放電電容量分別為882 mAh/g與1143 mAh/g,首圈庫倫效率為73% 與51%,且於長循環測試下,50圈電容維持率分別為69%與36%。由此可知,三種銅比例下添加1%與3% 銅的樣品,其電池循環效率較添加5% 銅的樣品高,推測當銅含量過高時會造成活性物質的團聚,而使顆粒變大,導致電容量衰退較快。
    本研究亦以3%添加量為基礎,探討不同添加物種類(銅、鐵、鈷、鎳以及氧化鋁)對SnOx/C @ M複合材料之物性及電化學特性之影響。 添加鐵後的材料,其首圈放電為1253 mAh/g、庫倫效率為75%,於長循環測試下,第30圈電容量維持率為36%;鈷沉積的材料,首圈放電為1264 mAh/g、庫倫效率為40%,第30圈電容量維持率為44%。而鎳和氧化鋁首圈放電為1211 mAh/g與1159 mAh/g,第一圈庫倫效率則分別為76% 和52% ,而30圈後電容量維持率分別為59% 與20%。由電化學測試可知,添加銅後的樣品其電容量衰退情形較其他添加物少。由於銅與錫之間的表面能差小,使兩者在高溫處理時能形成較小顆粒的合金,而使電極有較穩定的電化學表現。
    由上述電化學結果顯示,製備之材料其第一圈不可逆相當高,穩定性也不佳,且實驗過程中常發現材料會有氧化甚至劇烈燃燒的現象,為有效改善此問題,進一步設計絕氧裝置。以SnOx/C @ Cu實驗結果顯示,利用絕氧裝置首圈電容量為1046 mAh/g,且首圈庫倫效率由73% 提升至86%。而長循環下電容量為首圈電容量的70%。為確定高速率下電極的穩定度,而以電流密度200 mAh/g,電壓範圍0.01 V-3.0 V進行充放電測試,結果顯示首圈放電電容量為816 mAh/g、庫倫效率為74%,且100圈後電容量為首圈電容量的99.04%。由此可知隔絕大氣後,材料不容易被氧化,而碳能完善的包覆於材料表面,因此於長循環充放電後,電池仍能維持良好的電性表現。
    然而為了提升電容量,於高溫處理時利用不同還原氣氛,將二氧化錫還原成錫金屬。其電化學測試中,首圈放電電容量為1225 mAh/g,第一圈之庫倫效率為80%,且長循環測試下,電容量維持率為84%。若以高速率200 mA/g的電流密度以及電壓範圍0.01-3V下進行測試,則首圈放電電容量為1131 mAh/g,首圈庫倫效率達87%,且200圈後電容量維持率為80%。


    Nano-sized SnOx/C composites were synthesized using micron-size tin as a precursor in well-dispersed glucose solutions that were hydrothermally treated followed by the deposition of metal additives after treatment via a solution method. The material properties and electrochemical performance of the SnOx/C @ M (M = Fe, Co, Ni, Cu, Al2O3) were studied as a function of metal additives, amount of metal additives, and synthesis conditions.
    In the first part, different ratios of Cu (1%, 3% and 5%) additive was compared where scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed the Sn-Cu alloy of 1% and 3% Cu addition having better dispersion on the carbon layer and smaller particle size than the addition of 5% Cu. From electrochemical tests, the first cycle discharge capacity of 1% Cu addition was 879 mAh/g, and the first cycle coulombic efficiency was 66%. As for 3% and 5% Cu addition, the first cycle discharge capacity were 882 mAh/g and 1143 mAh/g, as well as the first cycle coulombic efficiency were 73% and 51%, respectively running between 5 mV to 3 V at a 50 mA/g current density.
    Addition of 1% and 3% Cu also showed stable capacity retention of 72% and 69% after 50 cycles compared to first cycle capacities where the addition of 5% Cu only showed 36% retention. As the result, 1% and 3% Cu addition were more stable than 5% Cu addition. Because Sn would aggregate to be large particle, when Cu loaded is higher, which result in rapidly capacity fading.
    In the second part, the addition of the different metal additives (Cu, Fe, Co, Ni and Al2O3) were studied from their relationship with Sn and electrochemical test where it was found that after the addition of Fe, the first discharge capacity was 1253 mAh/g and the first cycle columbic efficiency was 75% but showed a capacity retention of 36%, while the addition of Co showed the first discharge capacity was 1264 mAh/g, but both low first cycle coulombic efficiency and low capacity retention of 40% and 44%, respectively. The first discharge capacity were 1211 mAh/g and 1159 mAh/g, and first cycle coulombic efficiency for the addition of Ni and Al2O3 were 76% and 52% as well as low capacity retention of 59% and 20%, respectively. These results suggest that Cu remained the superior metal additive. Because the surface energy between Cu and Sn were lower than other additives, it would form smaller particle size of alloy during heat treatment.
    Although improvements over efficiency were found with the addition of Cu, the composite material still showed low coulombic efficiency due to the oxidation of Sn during exposure to the ambient air. To circumvent this issue, an air-isolated apparatus was designed to transfer the SnOx/C @ Cu composite material and reduce ambient air exposure during electrode fabrication. The results showed the first cycle discharge was 1046 mAh/g by an increase of first cycle coulombic efficiency from 73% to 86% and a capacity retention of 70%. Furthermore, under an increased current density of 200 mA/g, the first cycle discharge was 816 mAh/g, as well as the first cycle columbic efficiency was 74%, and the capacity retention was as high as 99.04% after 100 cycles. Because air isolated composite material could be better embedded in carbon layer, and become uniform core-shell like structure.
    Finally, in an attempt to reduce tin metal and prolong the cycle life of the composite material the purging gas during high temperature sintering was changed to other gas in order to increase the electrical conductivity by N-doping carbon and tin. The results show that the first discharge capacity was 1225 mAh/g as well as the first cycle columbic efficiency was 80%, and the capacity retention was 84% after 30 cycles. Under a 200 mA/g current density cycling, the first discharge capacity was 1131 mAh/g as well as first cycle columbic efficiency was 87%, and the capacity retention was 80% after 200 cycles.

    摘要 I Abstract III 誌謝 VI 目錄 VII 圖目錄 VIII 表目錄 XVIII 第1章 緒論 1 1.1 前言 1 1.2 鋰離子二次電池的組成與機制 2 1.3 鋰離子二次電池各元件介紹 6 第2章 文獻回顧 25 2.1 錫複合材料 25 2.2 研究動機 49 第3章 實驗 51 3.1儀器設備 51 3.2 實驗藥品 52 3.3 實驗步驟 53 3.4 材料鑑定與分析 57 3.5材料電化學特性測試 61 第4章 結果與討論 65 4.1 錫氧化成二氧化錫最佳化的探討 65 4.2 添加物對水熱產物物性之探討 (Cu, Fe, Co, Ni, Al2O3) 73 4.3 電極材料製備環境之探討 92 4.4 電極材料熱處理氣氛之探討 100 4.5綜合討論 114 第5章 結論 121 未來展望 122 參考文獻 124

    1. Dalavi, S., P. Guduru, and B.L. Lucht, Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes. Journal of The Electrochemical Society, 2012. 159(5): p. A642.
    2. Armand, M.B., INTERCALATION ELECTRODES. NATO Conference Series, (Series) 6: Materials Science, 1980. 2: p. 145-161.
    3. Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 2009. 8(6): p. 500-506.
    4. Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Challenges in the development of advanced Li-ion batteries: A review. Energy and Environmental Science, 2011. 4(9): p. 3243-3262.
    5. Ellis, B.L., K.T. Lee, and L.F. Nazar, Positive electrode materials for Li-Ion and Li-batteries. Chemistry of Materials, 2010. 22(3): p. 691-714.
    6. Balaish, M., A. Kraytsberg, and Y. Ein-Eli, A critical review on lithium-air battery electrolytes. Physical Chemistry Chemical Physics, 2014. 16(7): p. 2801-2822.
    7. Mizushima, K., Jones, P. C., Wiseman, P. J., Goodenough, J. B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
    8. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
    9. Huang, Y., Chen, Jitao, Ni, Jiangfeng, Zhou, Henghui, Zhang, Xinxiang, A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. Journal of Power Sources, 2009. 188(2): p. 538-545.
    10. Yabuuchi, N., Yoshii, Kazuhiro, Myung, Seung-Taek, Nakai, Izumi, Komaba, Shinichi, Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society, 2011. 133(12): p. 4404-4419.
    11. Thackeray, M.M., David, W. I. F., Bruce, P. G., Goodenough, J. B., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
    12. Liu, X.-M., Huang, Zheng-DongOh, Seiwoon Ma, Peng-Cheng Chan, Philip C. H. Vedam, Ganesh Kumar Kang, Kisu Kim, Jang-Kyo, Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. Journal of Power Sources, 2010. 195(13): p. 4290-4296.
    13. Shigemura, H.S., H. Kageyama, H. Kobayashi, H. West, A. R. Kanno, R. Morimoto, S. Nasu, S. Tabuchi, M., Structure and Electrochemical Properties of LiFexMn2−xO4  ( 0 ⩽ x ⩽ 0.5 )  Spinel as 5 V Electrode Material for Lithium Batteries. Journal of The Electrochemical Society, 2001. 148(7): p. A730-A736.
    14. Arora, P., Popov, B. N., White, R. E., Electrochemical Investigations of Cobalt‐Doped LiMn2O4 as Cathode Material for Lithium‐Ion Batteries. Journal of The Electrochemical Society, 1998. 145(3): p. 807-815.
    15. Fang, T.-T. and H.-Y. Chung, Reassessment of the Electronic-Conduction Behavior above the Verwey-Like Transition of Ni2+- and Al3+-Doped LiMn2O4. Journal of the American Ceramic Society, 2008. 91(1): p. 342-345.
    16. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 1997. 144(4): p. 1188-1194.
    17. Contents: (Adv. Funct. Mater. 19/2010). Advanced Functional Materials, 2010. 20(19): p. 3187-3193.
    18. Li, G., H. Azuma, and M. Tohda LiMnPO4 as the Cathode for Lithium Batteries. Electrochemical and Solid-State Letters, 2002. 5(6): p. A135-A137.
    19. Li, H.H., Jin, J., Wei, J. P., Zhou, Z., Yan, J., Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochemistry Communications, 2009. 11(1): p. 95-98.
    20. Amine, K., H. Yasuda, and M. Yamachi, Olivine LiCoPO4 as 4.8 V  Electrode Material for Lithium Batteries. Electrochemical and Solid-State Letters, 2000. 3(4): p. 178-179.
    21. Wolfenstine, J. and J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005. 142(1–2): p. 389-390.
    22. Zanini, M., S. Basu, and J.E. Fischer, Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon, 1978. 16(3): p. 211-212.
    23. 林素琴, 鋰電池材料發展分析 工研院電子報, 2009.
    24. Yoshino, A., These ten years and feature of rechargeable battery materials. 2003: p. 110.
    25. Guyomard, D. and J.M. Tarascon, Rechargeable Li<sub>1+x</sub>Mn<sub>2</sub>O<sub>4</sub>carbon cells with a new electrolyte composition. Journal of the Electrochemical Society, 1993. 140(11): p. 3071-3081.
    26. Barthel, J., et al., Conductivity of lithium perchlorate in propylene carbonate + acetonitrile mixtures from infinite dilution to saturation at temperatures from - 35 to 35°C. Journal of Electroanalytical Chemistry, 1993. 344(1-2): p. 249-267.
    27. Plichta, E.J. and W.K. Behl, Rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte. Journal of the Electrochemical Society, 1993. 140(1): p. 46-49.
    28. 黃裕豪, 鋰離子電池錫碳複合陽極材料的電化學行為. 國立台灣科技大學化學工程學系研究所碩士學位論文, 93學年度.
    29. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
    30. 林振華、林振富, 充電式鋰離子電池之材料與應用.2-2.
    31. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    32. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. Journal of The Electrochemical Society, 1979. 126(12): p. 2047-2051.
    33. Peled E., G.D., Ardel G., Menachem C., Bar-Tow D. and and E. V, Role of sei in lithium and lithium ion batteries Mat. Res. Soc. Symp., 1995. 393: p. 209-221.
    34. Peled E., G.D.a.P.J., Anode/Electrolyte Interface, in Handbook of Battery Materials, B.J. O., Editor. 1998.
    35. Peled E., M.C., Bar-Tow D. and Melman A., improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc., 1996. 143(1): p. L4-L7.
    36. E, P., in Rechargeable Lithium and Lithium-Ion Batteries, The Electrochem. Soc. Proceedings Series, ed. by Megahed S., Barnett B. M. and Xie L. (1995), 94-28, 1.
    .
    37. Lithium-Ion_Batteries_Solid-Electrolyte_Interphase., P.B. Balbuena and Y. Wang, Editors. 2004, Imperial College Press.
    38. Abraham, K.M., Recent developments in secondary lithium battery technology. Journal of Power Sources, 1985. 14(1–3): p. 179-191.
    39. Nishiyama, K., et al., Structural differences in self-assembled monolayers of anthraquinone derivatives on silver and gold electrodes studied by cyclic voltammetry and in situ SERS spectroscopy. Journal of Electroanalytical Chemistry, 1999. 478(1–2): p. 83-91.
    40. Takehara, Z.-i., Future prospects of the lithium metal anode. Journal of Power Sources, 1997. 68(1): p. 82-86.
    41. 徐雅亭、王復民、楊長榮, 鋰離子電池電解液的發展. 工業材料雜誌, 2006. 237: p. 141.
    42. Shi, H., Barker, J., Saidi, M. Y., Koksbang, R., Morris, L., Graphite structure and lithium intercalation. Journal of Power Sources, 1997. 68(2): p. 291-295.
    43. Bernal, J.D., The Structure of Graphite. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1924. 106(740): p. 749-773.
    44. 吳宇平、戴小兵、馬軍旗、程預江, 鋰離子電池應用與實踐. 化學工業出版社, 2004.
    45. 陳金銘, 高容量碳粉材料. 工業材料雜誌, 1997. 100: p. 57.
    46. Winter, M. and J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 1999. 45(1–2): p. 31-50.
    47. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
    48. Zhang, H.X., et al., Cross-stacked carbon nanotube sheets uniformly loaded with SnO<sub>2</sub> nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Advanced Materials, 2009. 21(22): p. 2299-2304.
    49. Lou, X.W., C.M. Li, and L.A. Archer, Designed synthesis of coaxial SnO<sub>2</sub>@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials, 2009. 21(24): p. 2536-2539.
    50. Peled, E., Menachem, C., Bar‐Tow, D., Melman, A., Improved Graphite Anode for Lithium‐Ion Batteries Chemically: Bonded Solid Electrolyte Interface and Nanochannel Formation. Journal of The Electrochemical Society, 1996. 143(1): p. L4-L7.
    51. Courtney, I.A. and J.R. Dahn, Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass. Journal of The Electrochemical Society, 1997. 144(9): p. 2943-2948.
    52. Larcher, D., et al., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry, 2007. 17(36): p. 3759-3772.
    53. Derrien, G., Hassoun, J., Panero, S., Scrosati, B., Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced Materials, 2007. 19(17): p. 2336-2340.
    54. Kim, I.S., G.E. Blomgren, and P.N. Kumta, Sn/C Composite Anodes for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2004. 7(3).
    55. Grigoriants, I., et al., The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chemical Communications, 2005(7): p. 921-923.
    56. Morishita, T., Hirabayashi, Tadamitsu, Okuni, Tomoyuki, Ota, Naoto, Inagaki, Michio, Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery. Journal of Power Sources, 2006. 160(1): p. 638-644.
    57. Read, J., Foster, D., Wolfenstine, J., Behl, W., SnO2-carbon composites for lithium-ion battery anodes. Journal of Power Sources, 2001. 96(2): p. 277-281.
    58. Balan, L., Schneider, R., Ghanbaja, J., Willmann, P., Billaud, D., Electrochemical lithiation of new graphite–nanosized tin particle materials obtained by SnCl2 reduction in organic medium. Electrochimica Acta, 2006. 51(17): p. 3385-3390.
    59. Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M. R., Wang, C., Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett, 2013. 13(2): p. 470-4.
    60. Zhang, H., Song, Huaihe, Chen, Xiaohong, Zhou, Jisheng, Enhanced Lithium Ion Storage Property of Sn Nanoparticles: The Confinement Effect of Few-Walled Carbon Nanotubes. The Journal of Physical Chemistry C, 2012. 116(43): p. 22774-22779.
    61. Qiu, Y., K. Yan, and S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chemical Communications, 2010. 46(44): p. 8359.
    62. Novoselov, K.S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
    63. Huang, X., Qi, Xiaoying, Boey, Freddy, Zhang, Hua, Graphene-based composites. Chemical Society Reviews, 2012. 41(2): p. 666-686.
    64. 哲生, 野., 実用化競爭に入ったグラフェン、「神の材料」の応用例が続點 2011.
    65. Ji, L., Tan, Zhongkui, Kuykendall, Tevye, An, Eun Ji, Fu, Yanbao, Battaglia, Vincent, Zhang, Yuegang, Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy & Environmental Science, 2011. 4(9): p. 3611.
    66. Zou, Y. and Y. Wang, Sn@CNT Nanostructures Rooted in Graphene with High and Fast Li-Storage Capacities. ACS Nano, 2011. 5(10): p. 8108-8114.
    67. Qin, J., He, Chunnian, Zhao, Naiqin, Wang, Zhiyuan, Shi, Chunsheng, Liu, En-Zuo, Li, Jiajun, Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano, 2014. 8(2): p. 1728-1738.
    68. Li, N., Song, Huawei, Cui, Hao, Wang, Chengxin, Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy, 2014. 3: p. 102-112.
    69. Wang, C., Li, Yi, Chui, Ying-San, Wu, Qi-Hui, Chen, Xianfeng, Zhang, Wenjun, Three-dimensional Sn–graphene anode for high-performance lithium-ion batteries. Nanoscale, 2013. 5(21): p. 10599.
    70. Trifonova, A., Wachtler, M., Winter, M., Besenhard, J. O., Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries. Ionics, 2002. 8(5-6): p. 321-328.
    71. Mukaibo, H., Sumi, Tomohide, Yokoshima, Tokihiko, Momma, Toshiyuki, Osaka, Tetsuya, Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries. Electrochemical and Solid-State Letters, 2003. 6(10): p. A218-A220.
    72. Xue, M.-Z., Yao, Jia, Cheng, Sun-Chao, Fu, Zheng-Wen, Lithium Electrochemistry of a Novel SnSe Thin-Film Anode. Journal of The Electrochemical Society, 2006. 153(2): p. A270.
    73. Arpacık, M., M. Bicer, and İ. Şişman, Influence of Microstructure on the Electrochemical Performance of Sn-Sb-Cu Nanostructures as Anode Materials for Lithium-Ion Battery. Journal of The Electrochemical Society, 2013. 160(11): p. A2251-A2257.
    74. Xia, Y., et al., Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2001. 148(5).
    75. Gu, Y., F. Wu, and Y. Wang, Confined Volume Change in Sn-Co-C Ternary Tube-in-Tube Composites for High-Capacity and Long-Life Lithium Storage. Advanced Functional Materials, 2013. 23(7): p. 893-899.
    76. Ke, F.-S., Huang, Ling, Jamison, Lauryn, Xue, Lian-Jie, Wei, Guo-Zhen, Li, Jun-Tao, Zhou, Xiao-Dong, Sun, Shi-Gang, Nanoscale tin-based intermetallic electrodes encapsulated in microporous copper substrate as the negative electrode with a high rate capacity and a long cycleability for lithium-ion batteries. Nano Energy, 2013. 2(5): p. 595-603.
    77. Lei, W.X., Pan, Y., Zhou, Y. C., Zhou, W., Peng, M. L., Ma, Z. S., CNTs–Cu composite layer enhanced Sn–Cu alloy as high performance anode materials for lithium-ion batteries. RSC Advances, 2014. 4(7): p. 3233.
    78. Sanchez, S.A., Narciso, J., Louis, E., Rodriguez-Reinoso, F., Saiz, E., Tomsia, A., Wetting and capillarity in the Sn/graphite system. Materials Science and Engineering: A, 2008. 495(1–2): p. 187-191.
    79. Amore, S., Ricci, E., Borzone, G., Novakovic, R., Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. Materials Science and Engineering: A, 2008. 495(1-2): p. 108-112.
    80. Zhu, Z., Wang, Shiwen, Du, Jing, Jin, Qi, Zhang, Tianran, Cheng, Fangyi, Chen, Jun, Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon As High-Performance Anode for Lithium-Ion Batteries. Nano Letters, 2013. 14(1): p. 153-157.
    81. Zhou, X., Bao, Jianchun, Dai, Zhihui, Guo, Yu-Guo, Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-Ion Battery Anodes. The Journal of Physical Chemistry C, 2013. 117(48): p. 25367-25373.
    82. Cheng, M.-Y., Hwang, Cheng-Liang, Pan, Chun-Jen, Cheng, Ju-Hsiang, Ye, Yun-Sheng, Rick, John F., Hwang, Bing-Joe, Facile synthesis of SnO2-embedded carbon nanomaterials via glucose-mediated oxidation of Sn particles. Journal of Materials Chemistry, 2011. 21(29): p. 10705.
    83. Marcano, D.C., Kosynkin, Dmitry V., Berlin, Jacob M., Sinitskii, Alexander, Sun, Zhengzong, Slesarev, Alexander, Alemany, Lawrence B. Lu, Wei, Tour, James M., Improved Synthesis of Graphene Oxide. ACS Nano, 2010. 4(8): p. 4806-4814.
    84. 李志甫, <同步輻射在觸媒化學上的應用(NTHU-2013).pdf>. 2013.
    85. Huh, S.H., Physics and Applications of Graphene. 2011: Korea Institute of Ceramic Engineering and Technology.
    86. N. Eustathopoulos, M.G.N., B. Drevet, Wettability at High Temperatures, ed. R.W.CAHN. 1999. November Elsevier.
    87. Zhou, X., Y. Zou, and J. Yang, Periodic structures of Sn self-inserted between graphene interlayers as anodes for Li-ion battery. Journal of Power Sources, 2014. 253: p. 287-293.
    88. Hwang, J., Woo, Seung Hee, Shim, Jongmin, Jo, Changshin, Lee, Kyu Tae, Lee, Jinwoo, One-Pot Synthesis of Tin-Embedded Carbon/Silica Nanocomposites for Anode Materials in Lithium-Ion Batteries. ACS Nano, 2013. 7(2): p. 1036-1044.
    89. Meschini, I., Nobili, Francesco, Mancini, Marilena, Marassi, Roberto, Tossici, Roberto, Savoini, Alberto, Focarete, Maria Letizia, Croce, Fausto, High-performance Sn@carbon nanocomposite anode for lithium batteries. Journal of Power Sources, 2013. 226(0): p. 241-248.
    90. Chen, C.H., Hwang, B. J., Do, J. S., Weng, J. H., Venkateswarlu, M., Cheng, M. Y., Santhanam, R., Ragavendran, K., Lee, J. F., Chen, J. M., Liu, D. G., An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochemistry Communications, 2010. 12(3): p. 496-498.
    91. Lin, Z., Waller, Gordon H., Liu, Yan, Liu, Meilin, Wong, Ching-ping, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy, 2013. 2(2): p. 241-248.
    92. Tzu-Chi Kuo, a.R.L.M., a,* and Greg M. Swainb,*, Electrochemical Modification of Boron-Doped Chemical Vapor Deposited
    Diamond Surfaces with Covalently Bonded Monolayers. Electrochemical and Solid-State Letters, 1990. 2 (6): p. 288-290.
    93. Hoang, S., Guo, S., Hahn, N. T., Bard, A. J., Mullins, C. B., Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett, 2012. 12(1): p. 26-32.
    94. HSIANG CHENa*, C.-H.K., YI-CHEN CHENa, HONG-KAI LOa, YIH-MIN YEHc, TIEN-CHANG LUd, and C.-S.L. HUEI-MIN HUANGd, Passivation of yellow luminescence defects in GaN film by
    annealing and CF4 plasma treatment. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS. 13(8).
    95. Li, M., Wu, Zhongshuai, Ren, Wencai, Cheng, Huiming, Tang, Nujiang, Wu, Wenbin, Zhong, Wei, Du, Youwei, The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material’s photoluminescence. Carbon, 2012. 50(14): p. 5286-5291.
    96. Cho, Y.J., Kim, Han Sung, Im, Hyungsoon, Myung, Yoon, Jung, Gyeong Bok, Lee, Chi Woo, Park, Jeunghee, Park, Mi-Hee, Cho, Jaephil, Kang, Hong Seok, Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes. The Journal of Physical Chemistry C, 2011. 115(19): p. 9451-9457.

    QR CODE