簡易檢索 / 詳目顯示

研究生: 莊佩馨
Pei-Xin Zhuang
論文名稱: 開發具新穎性之安全添加劑(雙馬來醯亞胺-(三聚氰酸)2/封閉型三異氰酸酯)應用於液態鋰電池之正極材料
Development of a novel safety additive (Bismaleimide-(Cyanuric Acid)2/Blocked Triisocyanate) for cathode materials of liquid lithium batteries
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 楊純誠
Chun-Chen Yang
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 91
中文關鍵詞: 液態鋰離子電池正極活性物質安全添加劑安全性循環性能
外文關鍵詞: liquid lithium-ion battery, cycling
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.2.1 鋰離子電池工作原理 2 1.2.2 正極材料 3 1.2.3 負極材料 5 1.2.4 電解質 7 1.2.5 隔離膜 8 第二章 文獻回顧 10 2.1 三元正極材料介紹 10 2.1.1富鎳材料的優勢與挑戰 10 2.2 三元正極材料改質方法 12 2.2.1 離子摻雜 12 2.2.2 核-殼與核-殼濃度梯度 14 2.2.3 表面塗層 17 第三章 實驗藥品、儀器及方法 22 3.1 實驗藥品 22 3.2 實驗儀器 23 3.3 實驗方法 24 3.3.1 DSC樣品製備 25 3.3.2 TGA樣品製備 26 3.3.3 添加劑製備 27 3.3.4 正極漿料製備 28 3.3.5 電極製備 29 3.3.6 鈕扣型電池組裝 29 第四章 結果與討論 31 4.1 差示掃描量熱法分析 31 4.2 熱重量分析 34 4.3 循環伏安法(CV)分析 37 4.3.1 Blank循環伏安法 37 4.3.2 BCB3循環伏安法 39 4.3.3 Benchmark循環伏安法 43 4.4 電池常溫充放電及循環壽命測試 47 4.4.1 常溫初始充放電測試 47 4.4.2 常溫循環壽命測試 49 4.5 常溫電化學交流阻抗分析(EIS) 52 4.5.1 常溫在充放電循環前電化學交流阻抗分析 52 4.5.2 常溫在充放電循環後電化學交流阻抗分析 54 4.6 倍率性能測試 57 4.7 高溫循環壽命測試 59 4.8 電池安全性能測試 63 4.8.1 四點探針阻抗分析 63 4.8.2 高溫電化學交流阻抗分析(EIS) 65 4.9 正極極片SEM分析 68 4.9.1 Blank極片SEM分析 68 4.9.2 BCB3添加劑極片SEM分析 69 第五章 結論 71 參考文獻 72

    1. Choi, S. and G.X. Wang, Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives. Advanced Materials Technologies, 2018. 3(9).
    2. Thackeray, M.M., Exploiting the Spinel Structure for Li-ion Battery Applications: A Tribute to John B. Goodenough. Advanced Energy Materials, 2021. 11(2).
    3. Kim, T.H., et al., The Current Move of Lithium Ion Batteries Towards the Next Phase. Advanced Energy Materials, 2012. 2(7): p. 860-872.
    4. Ma, S., et al., Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science-Materials International, 2018. 28(6): p. 653-666.
    5. Minato, T. and T. Abe, Surface and interface sciences of Li-ion batteries-Research progress in electrode electrolyte interface. Progress in Surface Science, 2017. 92(4): p. 240-280.
    6. Wakihara, M., Recent developments in lithium ion batteries. Materials Science & Engineering R-Reports, 2001. 33(4): p. 109-134.
    7. Li, B. and D.G. Xia, Anionic Redox in Rechargeable Lithium Batteries. Advanced Materials, 2017. 29(48).
    8. Whittingham, M.S., Lithium batteries and cathode materials. Chemical reviews, 2004. 104(10): p. 4271-4302.
    9. Liu, W., et al., Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed Engl, 2015. 54(15): p. 4440-57.
    10. Markevich, E., et al., High-Performance LiNiO2 Cathodes with Practical Loading Cycled with Li metal Anodes in Fluoroethylene Carbonate-Based Electrolyte Solution. Acs Applied Energy Materials, 2018. 1(6): p. 2600-+.
    11. Tian, Y.L., et al., LiMnO2@rGO nanocomposites for high-performance lithium-ion battery cathodes. Nanotechnology, 2021. 32(1).
    12. Jaber-Ansari, L., et al., Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene. Advanced Energy Materials, 2015. 5(17).
    13. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries. Journal of Power Sources, 2017. 343: p. 395-411.
    14. Zhang, Y., et al., Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Metals, 2012. 162(13-14): p. 1315-1326.
    15. Wang, R.H., et al., Lithium metal anodes: Present and future. Journal of Energy Chemistry, 2020. 48: p. 145-159.
    16. Xu, X.L., et al., Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. Journal of Energy Chemistry, 2018. 27(2): p. 513-527.
    17. Al Ja'farawy, M.S., et al., A Review: The Development of SiO2/C Anode Materials for Lithium-Ion Batteries. Journal of Electronic Materials, 2021. 50(12): p. 6667-6687.
    18. Nzereogu, P.U., et al., Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances, 2022. 9.
    19. Sandhya, C.P., B. John, and C. Gouri, Lithium titanate as anode material for lithium-ion cells: a review. Ionics, 2014. 20(5): p. 601-620.
    20. Khan, M., et al., SiO2-Based Lithium-Ion Battery Anode Materials: A Brief Review. Journal of Electronic Materials, 2022. 51(7): p. 3379-3390.
    21. Wang, Q.S., et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
    22. Yuan, M.Q. and K. Liu, Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry, 2020. 43: p. 58-70.
    23. Chen, Z.H., et al., Gel electrolyte for lithium-ion batteries. Electrochimica Acta, 2008. 53(8): p. 3262-3266.
    24. Francis, C.F.J., I.L. Kyratzis, and A.S. Best, Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Advanced Materials, 2020. 32(18).
    25. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
    26. Huang, X.S., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
    27. Costa, C.M., et al., Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019. 22: p. 346-375.
    28. Evans, T., et al., Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries. Journal of Power Sources, 2015. 292: p. 1-6.
    29. Song, Y.Z., et al., From separator to membrane: Separators can function more in lithium ion batteries. Electrochemistry Communications, 2021. 124.
    30. Chakraborty, A., et al., Layered Cathode Materials for Lithium-lon Batteries: Review of Computational Studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chemistry of Materials, 2020. 32(3): p. 915-952.
    31. Choi, K.H., et al., Design strategies for development of nickel-rich ternary lithium-ion battery. Ionics, 2020. 26(3): p. 1063-1080.
    32. Myung, S.T., et al., Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. Acs Energy Letters, 2017. 2(1): p. 196-223.
    33. Wang, X.X., et al., Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges. Advanced Energy Materials, 2020. 10(12).
    34. Shim, J.H., et al., Reduced Graphene Oxide-Wrapped Nickel-Rich Cathode Materials for Lithium Ion Batteries. Acs Applied Materials & Interfaces, 2017. 9(22): p. 18720-18729.
    35. Tang, Z.F., et al., Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects. Batteries-Basel, 2023. 9(3).
    36. Zhang, H.L. and J.J. Zhang, An overview of modification strategies to improve LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performance for automotive lithium-ion batteries. Etransportation, 2021. 7.
    37. Yuan, S., et al. Synthesis and electrochemical properties of cathode material LiNi0. 8Co0. 1Mn0. 1O2 via Li, Mg, Al dopping. in Advanced Materials Research. 2014. Trans Tech Publ.
    38. Yue, P., et al., A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2-zFz cathode materials. Electrochimica Acta, 2013. 92: p. 1-8.
    39. Xiao, L., et al., An Mg-Al dual doping strategy to enhance the structural stability and long cycle life of LiNi0.8Co0.1Mn0.1O2 cathode material. Ionics, 2022. 28(7): p. 3101-3112.
    40. Sun, Y.K., et al., Novel core-shell-structured Li (Ni0.8Co0.2)(0.8)(Ni0.5Mn0.5)(0.2) O-2 via coprecipitation as positive electrode material for lithium secondary batteries. Journal of Physical Chemistry B, 2006. 110(13): p. 6810-6815.
    41. Lee, Y., et al., Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for advanced high-energy and safe rechargeable batteries. Journal of Power Sources, 2018. 400: p. 87-95.
    42. Zhang, Y.H., et al., Facile synthesis of a novel structured Li Ni0.66Co0.1Mn0.24 O-2 cathode material with improved cycle life and thermal stability via ion diffusion. Journal of Power Sources, 2016. 327: p. 38-43.
    43. Liu, J., et al., Structure, modification, and commercialization of high nickel ternary material (LiNi(0.8)Co(0.1)Mn(0.1)O(2)and LiNi0.8Co0.15Al0.05O2) for lithium ion batteries. Journal of Solid State Electrochemistry, 2021. 25(2): p. 387-410.
    44. Sun, Y.K., et al., A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries. Advanced Functional Materials, 2010. 20(3): p. 485-491.
    45. Yoon, S.J., et al., Nanorod and Nanoparticle Shells in Concentration Gradient Core-Shell Lithium Oxides for Rechargeable Lithium Batteries. Chemsuschem, 2014. 7(12): p. 3295-3303.
    46. Sun, Y.K., et al., Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012. 11(11): p. 942-947.
    47. Zeng, X.Q., et al., Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries. Chem, 2018. 4(4): p. 690-704.
    48. Tan, X.R., et al., Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: A short review. Ceramics International, 2020. 46(14): p. 21888-21901.
    49. Cho, D.-H., et al., Effect of residual lithium compounds on layer Ni-rich Li [Ni0. 7Mn0. 3] O2. Journal of The Electrochemical Society, 2014. 161(6): p. A920.
    50. Dong, M.X., et al., Metallurgy Inspired Formation of Homogeneous Al2O3 Coating Layer To Improve the Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material. Acs Sustainable Chemistry & Engineering, 2017. 5(11): p. 10199-10205.
    51. Liang, L.W., et al., Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. Journal of Alloys and Compounds, 2016. 657: p. 570-581.
    52. Ma, F., et al., Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. Journal of Solid State Electrochemistry, 2019. 23(7): p. 2213-2224.
    53. Song, H.G., K.S. Park, and Y.J. Park, The effects of LaPO4 coating on the electrochemical properties of Li Ni0.5Co0.2Mn0.3 O-2 cathode material. Solid State Ionics, 2012. 225: p. 532-537.
    54. Pham, Q.T. and C.S. Chern, Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. Journal of Polymer Research, 2022. 29(4).
    55. Lin, C.C., et al., Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode. Electrochimica Acta, 2013. 101: p. 11-17.
    56. Liu, H.M., et al., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries. Rsc Advances, 2014. 4(99): p. 56147-56155.
    57. Wu, Y.S., et al., Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries. Chemical Engineering Journal, 2021. 405.
    58. Wu, Y.S., et al., Coating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries. Acs Sustainable Chemistry & Engineering, 2022. 10(22): p. 7394-7408.
    59. Pham, Q.T., et al., Kinetics and mechanisms of non-isothermal polymerization of N, N '-bismaleimide-4,4 '-diphenylmethane with cyanuric acid. Thermochimica Acta, 2021. 697.
    60. Su, H.L., et al., Silica nanoparticles modified with vinyltriethoxysilane and their copolymerization with N,N '-bismaleimide-4,4 '-diphenylmethane. Journal of Applied Polymer Science, 2007. 103(6): p. 3600-3608.
    61. Noh, H.J., et al., Comparison of the structural and electrochemical properties of layered Li NixCoyMnz O-2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 2013. 233: p. 121-130.
    62. Li, X.L., et al., Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte. Journal of Power Sources, 2020. 456.
    63. Barai, A., et al., A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy. Journal of Power Sources, 2015. 280: p. 74-80.
    64. Choi, W., et al., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 2020. 11(1).
    65. Xia, B.Z., et al., Using Self Organizing Maps to Achieve Lithium-Ion Battery Cells Multi-Parameter Sorting Based on Principle Components Analysis. Energies, 2019. 12(15).
    66. Zhang, Q.T., et al., High performance spinel LiNi0.5Mn1.5O4 cathode material by lithium polyacrylate coating for lithium ion battery. Electrochimica Acta, 2014. 143: p. 265-271.
    67. Qiu, Y.J., et al., Adiponitrile (ADN): A Stabilizer for the LiNi0.8Co0.1Mn0.1O2 (NCM811) Electrode/Electrolyte Interface of a Graphite/NCM811 Li-Ion Cell. Acs Applied Materials & Interfaces, 2022. 14(9): p. 11398-11407.
    68. Xiao, Y., et al., Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries. Acs Applied Materials & Interfaces, 2013. 5(5): p. 1681-1687.
    69. Logan, E.R., et al., A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters. Journal of the Electrochemical Society, 2018. 165(2): p. A21-A30.
    70. Mainusch, N., et al., New Contact Probe and Method to Measure Electrical Resistances in Battery Electrodes. Energy Technology, 2016. 4(12): p. 1550-1557.
    71. Cho, W., et al., Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. Journal of Power Sources, 2015. 282: p. 45-50.

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE