簡易檢索 / 詳目顯示

研究生: 陳冠宇
Kuan-Yu Chen
論文名稱: 奈米碳材料/聚偏二氟乙烯-三氟乙烯 壓電複合薄膜之心震圖感測器應用
Carbon-Based Nanomaterials/P(VDF-TrFE) Piezoelectric Composite Films for Seismocardiography Sensor Applications
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
Chin-Yang Yu
邱顯堂
Sian-Tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 101
中文關鍵詞: 壓電薄膜碳黑奈米碳管石墨烯分散劑心震圖
外文關鍵詞: Piezoelectric film, Carbon black, Carbon nanotubes, Graphene, Dispersant, Seismocardiography (SCG)
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,穿戴式裝置的市場規模有跳躍式的成長,根據市場調查2024年穿戴式裝置的市場規模將高達680億美元,因此有越來越多與穿戴式裝置相關的研究發表在期刊中,並且也都獲得不錯的成績。有關壓電材料的研究已有數十年之久,但由於效率不佳及沒有適當的應用而遲遲停留在研究階段,但近幾年很多研究顯示可以藉由添加奈米複合材料來增加壓電效率,並且期刊上也發表了有關心震圖(SCG)、血壓量測及充電裝置等相關的應用。由於穿戴式裝置的材料選擇上必須具有一定的韌性,其中又以壓電聚合物P(VDF-TrFE)同時兼具韌性及不錯的壓電效率,因此在眾多壓電材料中P(VDF-TrFE)成為在穿戴式裝置上的最適合的材料。本研究是將壓電聚合物P(VDF-TrFE)薄膜利用熱處理及極化處理的方式提升薄膜結晶度及壓電效果,再利用添加不同維度的奈米碳材料,分別為碳黑(CB)、改質碳黑(OCB)、奈米碳管(CNT)、改質奈米碳管(CNT-COOH)、氧化還原石墨烯(rGO)及氧化石墨烯(GO),比較不同維度的碳材料與碳材料表面官能基的差異對於P(VDF-TrFE)薄膜結晶度及壓電效果的影響,再藉由添加親油性高分子分散劑(Polymeric Dispersant)提升奈米碳材的分散性,此高分子分散劑是以苯乙烯-馬林酸酐共聚物(SMA系列)和聚醚單胺( Polyoxyalkylene amine、M1000) 進行酰胺化和酰亞胺化反應合成,以奈米碳材與分散劑不同比例(10:1、5:1、1:1、1:5、1:10)進行比較,利用提升溶液的分散性,使P(VDF-TrFE)分子鏈中的氟(F)原子,可以更有效率的與碳材中的OH基產生氫鍵,藉此提升薄膜具有壓電效果的β晶相含量,使薄膜在應用端上有更高的輸出電壓及在感測元件上有更好的靈敏度。


In recent years, the market size of wearable devices has grown by leaps and bounds. According to market research, the market size of wearable devices will reach 68 billion USD in 2024. Therefore, more and more research related to wearable devices is published. Research on piezoelectric materials has been for decades, But due to the efficiency and useful application,it stayed in the research stage, But in recent years, many studies have shown that the piezoelectric efficiency can be increased by adding nanocomposites, and published related applications such as Seismocardiography (SCG), blood pressure measurement and charging devices. Because the material selection of the wearable device must have certain flexibility. Among them, the piezoelectric polymer P (VDF-TrFE) has both toughness and piezoelectric efficiency. Therefore, P (VDF-TrFE) has become the most suitable material for wearable devices among many piezoelectric materials. In this study,piezoelectric polymer P (VDF-TrFE) film improve the crystallinity and piezoelectric effect of the film by annealing process and poling process and use of nano-carbon materials with different dimensions, including carbon black, carbon nanotubes and graphene, compare the effects of different dimensions of carbon materials and the functional groups on the surface of carbon materials on the crystallinity and piezoelectric effect of P (VDF-TrFE) films. By adding Polymeric Dispersant to improve the dispersibility of carbon nanomaterials the polymer dispersant is synthesized by amide reaction of Styrene Maleic Anhydride copolymer (SMA series) and Polyether monoamine (M1000). Compare with different ratios of nano carbon material and dispersant (10: 1, 5: 1, 1: 1, 1: 5, 1:10), by enhancing the dispersibility of the solution, the F atoms in the molecular chain of P (VDF-TrFE), can more efficiently generate hydrogen bonds with OH- in carbon materials, to increase the content of β crystal phase with piezoelectric effect, the film has a higher output voltage on the application side and better sensitivity on the sensing element.

目錄 摘要 …………………………………………………………………I Abstract ……………………………………………………………….III 目錄 ………………………………………………………………..V 圖目錄 ……………………………………………………………….IX 表目錄 ……………………………………………….……………..XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 壓電原理 4 2.1.1 正壓電效應 4 2.1.2 逆壓電效應 5 2.1.3 壓電係數 6 2.2 壓電材料介紹 7 2.2.1 壓電材料種類 7 2.2.2 聚偏二氟乙烯-三氟乙烯(poly(vinylidenefluoride-co-trifluoroethylene),P(VDF-TrFE)) 9 2.2.3 影響 P(VDF-TrFE)形成β 相之製程 11 2.2.4 壓電複合材料 23 2.3 奈米碳材料(Carbon materials)的介紹 24 2.3.1 碳黑(Carbon black, CB)的結構性質 24 2.3.2 碳黑的製備方法 25 2.3.3 奈米碳管(Carbon nanotube, CNT)的結構性質 26 2.3.4 奈米碳管的製備方法 27 2.3.5 石墨烯(Graphene)的結構性質 28 2.3.6 墨烯的製備方法 30 2.4 分散劑 32 2.4.1 分散劑介紹 32 2.5 Beer-Lambert Law 33 2.6 壓電材料的應用 33 第三章 實驗方法 38 3.1 實驗流程圖 38 3.2 實驗藥品與儀器 39 3.2.1 實驗藥品 39 3.2.2 實驗設備及儀器 41 3.3 實驗方法和原理 43 3.3.1 聚偏二氟乙烯-三氟乙烯P(VDF-TrFE)溶液 43 3.3.2 改質碳黑 (OCB) 43 3.3.3 聚偏二氟乙烯-三氟乙烯/奈米碳材複合壓電薄膜 44 3.4 碳材分散液 45 3.4.1 高分子分散劑合成(SMA-Amide) 45 3.4.2 改質奈米碳管分散液 46 3.4.3 改質奈米碳管分散液置備複合壓電薄膜 46 3.5 鑑定及儀器分析 47 第四章 結果與討論 52 4.1 聚偏二氟乙烯-三氟乙烯(P(VDF-TrFE)) 52 4.1.1 聚偏二氟乙烯-三氟乙烯退火製成分析 52 4.1.2 聚偏二氟乙烯-三氟乙烯極化處理分析 56 4.2 聚偏二氟乙烯-三氟乙烯/碳材壓電複合薄膜 60 4.2.1 P(VDF-TrFE)/CB、OCB壓電複合薄膜 60 4.2.2 P(VDF-TrFE)/CNT、CNT-COOH壓電複合薄膜 64 4.2.3 P(VDF-TrFE)/rGO、GO壓電複合薄膜 68 4.2.4 奈米碳材料複合壓電薄膜之截面特徵 72 4.2.5 奈米碳材料壓電複合薄膜之機械性質分析 73 4.2.6 碳黑、碳管、石墨烯系統比較 74 4.3 高分子分散劑 78 4.3.1 苯乙烯馬來酸酐-酰胺的合成(SMA-amide) 78 4.3.2 高分子分散劑與改質奈米碳管的分散機制 79 4.4 奈米碳材分散液 80 4.4.1 改質奈米碳管與不同分散劑的粒徑分析 80 4.4.2 改質奈米碳管與不同分散劑的穿透率及TEM圖 84 4.5 P(VDF-TrFE)/CNT-COOH/SMA40-M壓電複合薄膜 86 4.6 壓電複合薄膜的應用 90 4.6.1 心震圖生理訊號感測器 90 4.6.2 壓力感測器應用 92 4.6.3 能量收集原件 93 第五章 結論 94 第六章 參考文獻 95

[1] V. Balkevich and C. Flidlider, "Hot-pressing of some piezoelectric ceramics in the PZT system," Ceramurgia international, vol. 2, no. 2, pp. 81-87, 1976.
[2] B. Kumar and S.-W. Kim, "Energy harvesting based on semiconducting piezoelectric ZnO nanostructures," Nano Energy, vol. 1, no. 3, pp. 342-355, 2012.
[3] H. B. Sharma, H. Sarma, and A. Mansingh, "Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin films," Journal of materials science, vol. 34, no. 6, pp. 1385-1390, 1999.
[4] M. Benz and W. B. Euler, "Determination of the crystalline phases of poly (vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy," Journal of applied polymer science, vol. 89, no. 4, pp. 1093-1100, 2003.
[5] Q. Zhang, V. Bharti, and X. Zhao, "Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer," Science, vol. 280, no. 5372, pp. 2101-2104, 1998.
[6] Y. Wang, N. Herron, K. Moller, and T. Bein, "Three-dimensionally confined diluted magnetic semiconductor clusters: Zn1− xMnxS," Solid state communications, vol. 77, no. 1, pp. 33-38, 1991.
[7] D. P. Vanderbilt, J. P. English, G. L. Fleming, G. W. McNeely, D. R. Cowsar, and R. L. Dunn, "Biodegradable Polyamides Based on 4, 4′-Spirobibutyrolactone," in Progress in Biomedical Polymers: Springer, 1990, pp. 249-262.
[8] A. J. Lovinger, "Annealing of poly (vinylidene fluoride) and formation of a fifth phase," Macromolecules, vol. 15, no. 1, pp. 40-44, 1982.
[9] G. Samara and F. Bauer, "The effects of pressure on the β molecular relaxation and phase transitions of the ferroelectric copolymer P (VDF0. 7TrFe0. 3)," Ferroelectrics, vol. 135, no. 1, pp. 385-399, 1992.
[10] S. Manna and A. K. Nandi, "Piezoelectric β polymorph in poly (vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite films," The Journal of Physical Chemistry C, vol. 111, no. 40, pp. 14670-14680, 2007.
[11] R. K. Layek, S. Samanta, D. P. Chatterjee, and A. K. Nandi, "Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation," Polymer, vol. 51, no. 24, pp. 5846-5856, 2010.
[12] J. Buckley and P. Cebe, "Nanocomposites of poly (vinylidene fluoride) with organically modified silicate," Polymer, vol. 47, no. 7, pp. 2411-2422, 2006.
[13] S. Chandrasekaran and C. Bowen., "Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices," Physics Reports, vol. 792, pp. 1-33, 2019.
[14] A. Safari and E. K. Akdogan, Piezoelectric and acoustic materials for transducer applications. Springer Science & Business Media, 2008.
[15] D. Vatansever, E. Siores, and T. Shah, "Alternative resources for renewable energy: piezoelectric and photovoltaic smart structures," Global Warming-Impacts and Future Perspective, p. 263, 2012.
[16] G. Aschero, P. Gizdulich, F. Mango, and S. Romano, "Converse piezoelectric effect detected in fresh cow femur bone," Journal of biomechanics, vol. 29, no. 9, pp. 1169-1174, 1996.
[17] N. A. A. Nawir, A. A. Basari, M. S. M. Saat, N. X. Yan, and S. Hashimoto, "A Review on Piezoelectric Energy Harvester and Its Power Conditioning Circuit," ARPN Journals, 2018.
[18] W. Liu and X. Ren, "Large piezoelectric effect in Pb-free ceramics," Physical review letters, vol. 103, no. 25, p. 257602, 2009.
[19] J. Y. Li, "Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials," International Journal of Engineering Science, vol. 38, no. 18, pp. 1993-2011, 2000.
[20] C. Lee, T. Itoh, R. Maeda, and T. Suga, "Characterization of micromachined piezoelectric PZT force sensors for dynamic scanning force microscopy," Review of scientific instruments, vol. 68, no. 5, pp. 2091-2100, 1997.
[21] K. I. Park and J. H. Son, "Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates," Advanced materials, vol. 26, no. 16, pp. 2514-2520, 2014.
[22] P. Ueberschlag, "PVDF piezoelectric polymer," Sensor review, 2001.
[23] D. Setiadi and P. Regien, "A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments," Sensors and Actuators A: Physical, vol. 47, no. 1-3, pp. 408-412, 1995.
[24] H. Xu, Z.-Y. Cheng, D. Olson, T. Mai, Q. Zhang, and G. Kavarnos, "Ferroelectric and electromechanical properties of poly (vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer," Applied Physics Letters, vol. 78, no. 16, pp. 2360-2362, 2001.
[25] T. Yamada and T. Kitayama, "Ferroelectric properties of vinylidene fluoride‐trifluoroethylene copolymers," Journal of Applied Physics, vol. 52, no. 11, pp. 6859-6863, 1981.
[26] H. Xu, G. Shanthi, V. Bharti, Q. Zhang, and T. Ramotowski, "Structural, Conformational, and Polarization Changes of Poly (vinylidene fluoride− trifluoroethylene) Copolymer Induced by High-Energy Electron Irradiation," Macromolecules, vol. 33, no. 11, pp. 4125-4131, 2000.
[27] M. Neidhöfer, F. Beaume, L. Ibos, A. Bernes, and C. Lacabanne, "Structural evolution of PVDF during storage or annealing," Polymer, vol. 45, no. 5, pp. 1679-1688, 2004.
[28] W. J. Hu and D. M. Juo, "Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films," Scientific reports, vol. 4, p. 4772, 2014.
[29] J. S. Lee, A. A. Prabu, and K. J. Kim, "Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P (VDF-TrFE) film for nonvolatile polymer memory device," Polymer, vol. 51, no. 26, pp. 6319-6333, 2010.
[30] G. Teyssedre, A. Bernes, and C. Lacabanne, "Cooperative movements associated with the Curie transition in P (VDF‐TrFE) copolymers," Journal of Polymer Science Part B: Polymer Physics, vol. 33, no. 6, pp. 879-890, 1995.
[31] A. J. Lovinger, "Ferroelectric polymers," Science, vol. 220, no. 4602, pp. 1115-1121, 1983.
[32] V. Sencadas, S. Lanceros-Méndez, and J. Mano, "Characterization of poled and non-poled β-PVDF films using thermal analysis techniques," Thermochimica acta, vol. 424, no. 1-2, pp. 201-207, 2004.
[33] G. Zhu, Z. Zeng, L. Zhang, and X. Yan, "Piezoelectricity in β-phase PVDF crystals: A molecular simulation study," Computational Materials Science, vol. 44, no. 2, pp. 224-229, 2008.
[34] A. Salimi and A. Yousefi, "Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films," Polymer Testing, vol. 22, no. 6, pp. 699-704, 2003.
[35] Y. Lin, X. Cui, C. Yen, and C. M. Wai, "Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells," The Journal of Physical Chemistry B, vol. 109, no. 30, pp. 14410-14415, 2005.
[36] G. Davis, J. McKinney, M. Broadhurst, and S. Roth, "Electric‐field‐induced phase changes in poly (vinylidene fluoride)," Journal of Applied Physics, vol. 49, no. 10, pp. 4998-5002, 1978.
[37] C. A. Nguyen, P. S. Lee, W. A. Yee, X. Lu, M. Srinivasan, and S. G. Mhaisalkar, "Enhanced functional and structural characteristics of poly (vinylidene-trifluoroethylene) copolymer thin films by corona poling," Journal of The Electrochemical Society, vol. 154, no. 10, pp. G224-G228, 2007.
[38] S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, and Z. Zhao, "Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method," Macromolecules, vol. 42, no. 22, pp. 8870-8874, 2009.
[39] P. Martins and C. Caparros, "Role of nanoparticle surface charge on the nucleation of the electroactive β-poly (vinylidene fluoride) nanocomposites for sensor and actuator applications," The Journal of Physical Chemistry C, vol. 116, no. 29, pp. 15790-15794, 2012.
[40] L. Chen and H. Liu, "Facile preparation and properties of polyvinylidene fluoride dielectric nanocomposites via phase morphology control and incorporation of multiwalled carbon nanotubes conductive fillers," Journal of Applied Polymer Science, vol. 137, no. 11, p. 48463, 2020.
[41] C.-M. Wu, M.-H. Chou, and W.-Y. Zeng, "Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes," Nanomaterials, vol. 8, no. 6, p. 420, 2018.
[42] J.-B. Donnet, W.-D. Wang, A. Vidal, and M.-J. Wang, "Observation of plasma-treated carbon black surfaces by scanning tunnelling microscopy," Carbon, vol. 32, no. 2, pp. 199-206, 1994.
[43] J.-B. Donnet, "Fifty years of research and progress on carbon black," Carbon, vol. 32, no. 7, pp. 1305-1310, 1994.
[44] H. Boehm, "Some aspects of the surface chemistry of carbon blacks and other carbons," Carbon, vol. 32, no. 5, pp. 759-769, 1994.
[45] M. W. Schmidt and A. G. Noack, "Black carbon in soils and sediments: analysis, distribution, implications, and current challenges," Global biogeochemical cycles, vol. 14, no. 3, pp. 777-793, 2000.
[46] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
[47] R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, "Carbon nanotubes--the route toward applications," Science, vol. 297, no. 5582, pp. 787-792, 2002.
[48] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, no. 6430, pp. 603-605, 1993.
[49] K. Sarangdevot and B. Sonigara, "The wondrous world of carbon nanotubes: Structure, synthesis, properties and applications," J. Chem. Pharm. Res, vol. 7, no. 6, pp. 916-933, 2015.
[50] E. T. Thostenson, Z. Ren, and T.-W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites science and technology, vol. 61, no. 13, pp. 1899-1912, 2001.
[51] T. Ebbesen and P. Ajayan, "Large-scale synthesis of carbon nanotubes," Nature, vol. 358, no. 6383, pp. 220-222, 1992.
[52] Z. Ren and Z. P. Huang, "Synthesis of large arrays of well-aligned carbon nanotubes on glass," Science, vol. 282, no. 5391, pp. 1105-1107, 1998.
[53] H. Zhu, C. Xu, D. Wu, B. Wei, R. Vajtai, and P. Ajayan, "Direct synthesis of long single-walled carbon nanotube strands," Science, vol. 296, no. 5569, pp. 884-886, 2002.
[54] K. S. Novoselov and D. Jiang, "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences, vol. 102, no. 30, pp. 10451-10453, 2005.
[55] T. H. Nguyen, Z. Zhang, A. Mustapha, H. Li, and M. Lin, "Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy," Journal of agricultural and food chemistry, vol. 62, no. 43, pp. 10445-10451, 2014.
[56] Y. He, G. Lu, H. Shen, Y. Cheng, and Q. Gong, "Strongly enhanced Raman scattering of graphene by a single gold nanorod," Applied Physics Letters, vol. 107, no. 5, p. 053104, 2015.
[57] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and technology: a collection of reviews from nature journals: World Scientific, 2010, pp. 11-19.
[58] S. Chen, B. Cheng, and C. Ding, "Synthesis and characterization of poly (vinyl pyrrolidone)/reduced graphene oxide nanocomposite," Journal of Macromolecular Science, Part B, vol. 54, no. 4, pp. 481-491, 2015.
[59] X. Liu, L. Cao, W. Song, K. Ai, and L. Lu, "Functionalizing metal nanostructured film with graphene oxide for ultrasensitive detection of aromatic molecules by surface-enhanced Raman spectroscopy," ACS applied materials & interfaces, vol. 3, no. 8, pp. 2944-2952, 2011.
[60] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chemical society reviews, vol. 39, no. 1, pp. 228-240, 2010.
[61] H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, "High-efficient synthesis of graphene oxide based on improved hummers method," Scientific reports, vol. 6, p. 36143, 2016.
[62] L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim, and J. Huang, "Graphene oxide as surfactant sheets," Pure and Applied Chemistry, vol. 83, no. 1, pp. 95-110, 2010.
[63] P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 10, pp. 1345-1367, 2010.
[64] S. Bairagi and S. W. Ali, "A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs," International Journal of Energy Research.
[65] P. Krempl, G. Schleinzer, and W. Wallno, "Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics," Sensors and Actuators A: Physical, vol. 61, no. 1-3, pp. 361-363, 1997.
[66] L. Gu and J. Liu, "Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode," Nature communications, vol. 11, no. 1, pp. 1-9, 2020.
[67] T. Ha and J. Tran, "A Chest‐Laminated Ultrathin and Stretchable E‐Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals," Advanced Science, vol. 6, no. 14, p. 1900290, 2019.

無法下載圖示 全文公開日期 2025/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE