簡易檢索 / 詳目顯示

研究生: 紀承翰
Cheng-Han Chi
論文名稱: 分子動力學模擬不同冷卻速率之鐵鎢合金的結晶度與切槽行為
Molecular Dynamics Study on Crystallization and Grooving Behaviors of Fe70W30 alloy Solidification in Different Cooling Rate
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
丘群
Chun Chiu
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 157
中文關鍵詞: 合金塊材 合金塊材結晶度切削力 切削力刀斜角剪切角
外文關鍵詞: alloy bulk, crystallization, cutting force, rake angle, shear angle
相關次數: 點閱:198下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學模擬鐵/鎢合金塊材,改變刀具之刀斜角(Rake Angle),探討切削時材料塑變行為與切削力之變化,並利用不同切削速度探討切削後之溝槽表面粗糙度。將二元合金熔煉後,利用不同冷卻速率獲得合金塊材,探討結晶度及切削後剪切面上之剪切角(Shear Angle)之變化、切削力與溝槽表面粗糙度的變動情形。原子間的作用力採用嵌入式原子(Embedded Atom Method)勢能、Tight-binding勢能與Morse勢能函數模型。
    模擬的結果顯示,使用正斜角之刀具進行切削較易排屑,因此溝槽表面粗糙度及表面形貌較為良好;負斜角之刀具切削時較不易排屑,使溝槽表面粗糙度及表面形貌較差,且所需之切削力較大。冷卻速率越慢凝固後材料的結晶度較高;相反的,冷卻速率越快的結晶度較低。隨著材料結晶度的提升,切削力及剪切角也會隨著增加,且溝槽表面粗糙度也較差,但可得到較佳的溝槽形貌。


    The research studies the nanometric cutting of Fe70W30 alloy bulk with the diamond tool by molecular dynamics. Using different rake angle of diamond tool as a parameter conditions to investigate the plastic deformation and the change of cutting force when the material is cutting. And using the different cutting speed to investigate the surface roughness of grooving. Using different cooling rates of alloy bulk to investigate the degree of crystallinity, cutting force, surface roughness of grooving and the shear angle on the shear plane after cutting. The interactions between atoms in the workpiece are described by in embedded-atom method (EAM) and Tight-binding (TB) and Morse potential.
    The simulation results shows that using the positive rake angel of tool is better to remove chip lead to the well surface roughness and shape of grooving, but using the negative rake angel of tool is difficult to remove chip lead to worse surface roughness and shape of grooving and need more cutting force. When decreasing of the cooling rate after solidification within the bulk higher crystallinity. Contrary, increasing of the cooling rate after solidification within the bulk lower crystallinity. With the increase of the degree of crystallinity, cutting force and the shear angle will increase, and lead to worse surface roughness of grooving but getting better shape of grooving.

    摘要 Abstract 致謝 目錄 第一章緒論 1.1研究動機及目的 1.2文獻回顧 1.3分子動力學應用於奈米切削 第二章分子動力學基礎理論 2.1分子動力學的基本假設 2.2原子間作用力與勢能函數 2.3運動方程式與演算法 2.4Verlet表列法 2.5週期性邊界 2.6最小映像法則 2.7無因次化 2.8Centrosymmetry參數(CSP) 2.9Radial Distribution Function徑向分佈函數 2.10共同鄰近原子 (Common Neighbor Analysis,CNA) 第三章模擬步驟與模型建立 3.1模擬步驟 3.2初始設定 3.2.1系統平衡 3.2.2動態模擬 第四章結果與討論 4.1單晶鐵(001)晶面[1 ̅00]方向切削行為分析 4.2鐵/鎢合金塊材之熔煉程序與結晶度之探討 4.2.1鐵/鎢合金塊材之製造程序 4.2.2冷卻速率對材料結晶度之影響 4.3鐵/鎢合金塊材在不同冷卻速率下之切削行為分析 4.3.1鐵/鎢合金塊材在冷卻速率1×1013K/s之切削行為 4.3.2鐵/鎢合金塊材在冷卻速率2×1012K/s之切削行為 4.3.3鐵/鎢合金塊材在冷卻速率1×1012K/s之切削行為 4.4刀具材料與工件親和力的影響 4.5改變刀具之刀斜角探討鐵/鎢合金塊材之切削行為分析 4.5.1使用30∘刀斜角對鐵/鎢合金塊材切削之行為分析 4.5.2使用0∘刀斜角對鐵/鎢合金塊材切削之行為分析 4.5.3使用-45∘刀斜角對鐵/鎢合金塊材切削之行為分析 4.6不同的切削速度對鐵/鎢合金之溝槽表面粗糙度的影響 4.6.1使用30∘刀斜角之刀具進行不同的切削速度 4.6.2使用0∘刀斜角之刀具進行不同的切削速度 4.6.3使用- 45∘刀斜角之刀具進行不同的切削速度 第五章結論與建議 5.1結論 5.2未來研究方向與建議 參考文獻

    1.John Dalton, “A new system of chemical philosophy”, London,1808.
    2.J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes Ⅳ.The Equations of Hydrodynamics”, J. Chem. Phys., Vol.18, No.6, pp. 817-829 (1950).
    3.N. Metropolis, ArianNa W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., Vol.21, No.6, pp.1087-1092(1953).
    4.L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol.159, No. 1, pp. 98-103 (1967).
    5.B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
    6.D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers”, Comput. phys. Rep., Vol. 9, pp.1-53(1988).
    7.M. Meyer and V. Pontikis, “Computer Simulation in Material Science: Interatomic Potentials”, Simulation Techniques and Applications, Kluwer Academic Publishers, USA, (1991)
    8.N. Ikawa, S. Shimada, H. Tanaka and G. Ohmori, “An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning”, Ann. CIRP,Vol.40,No.1,
    pp.551-554(1991).
    9.S. Shimada, N. lkawa, H. Tanaka and J. Uchikoshi, “Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis”, Ann. CIRP, Vol. 43, No.9,pp.51-54(1994).
    10.S. Shimada, N. Ikawa, G. Ohmori, H. Tanaka and J. Uchikoshi, “Molecular Dynamics Analysis as Compared with Experimental Results of micromachining”, Ann.CIRP, Vol.41, No.1,pp.117-120(1992).
    11.S. Shimada, “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation”, Ann. CIRP,
    Vol.42, No.1,pp. 91-94(1993).
    12.T. Inamura,N. Takezawa and N. Taniguchi, “Atomic-scale cutting in a computer using crystal models of copper and diamond”, Ann.CIRP,
    Vol.41,pp.121-124(1992).
    13.T. Inamura, N. Takezawa and Y. Kumaki, “Mechanics and energy dissipation in nanoscale cutting”, Ann.CIRP, Vol.42,pp.79-82(1993).
    14.T. Inamura, N. Takezawa,Y. Kumaki and T. Sata, “On a possible mechanism of shear deformation in nanoscale cutting”, Ann.CIRP,
    Vol.43,pp.47-50(1994).
    15.R. Komanduri, N. Chandrasekaran and L. M. Raff, “Effect of tool geometry in nanometric cutting: a molecular dynamics simulation
    approach”, Wear, Vol.219,84-97 (1998).
    16.R. Komanduri, N. Chandrasekaran and L. M. Raff, “Simulation of nanometric cutting of single crystal aluminum-effect of crystal
    orientation and direction of cutting”, Wear, Vol.242,pp.60-68(2000).
    17.R. Komanduri, N. Chandrasekaran and L. M. Raff, “Simulation of indentation and scratching of single crystal aluminum”, Wear,
    Vol.240,No.1-2, pp.113-143(2000).
    18.R. Komanduri, N. Chandrasekaran and L. M. Raff, “Molecular dynamics simulation of atomic-scale friction”, Phys.Rev.B, Vol.61,
    pp.14007-14019(2000).
    19.R. Komanduri, M. Lee and L. M. Raff, “The significance of normal rake in oblique machining”, International Journal of Machine Tools and Manufacture, Vol.44, No.10,pp.1115-1124(2004).
    20.K. Maekawa, and A.Itoh, “Friction and tool wear in nano-scale machining – A molecular dynamics approach”, Wear, Vol.188,
    pp.115-122(1995).
    21.L. Wang, X. F. Bian and H. Li, “Structural characteristics of Ag3Au alloy melt and crystal growth by molecular dynamicssimulation”, Materials Letters, Vol.51, pp.7-13 (2001).
    22.Q. X. Pei, C. Lu, F. Z. Fang and H. Wu, “Nanometric cutting of copper: A molecular dynamics study”, Computational Materials Science,Vol.37,No.4, pp.434-441(2006).
    23.Q. X. Pei, C. Lu and H. P. Lee, “Large scale molecular dynamics study of nanometric machining of copper”, Computational Materials
    Science, Vol.41, pp.177–185(2007).
    24.Y. Gao and H. M. Urbassek, “Evolution of plasticity in nanometric cutting of Fe single crystals”, Applied Surface Science, Vol 317, pp.6-10(2014).
    25.Peng-Zhe Zhu, Chen Qiu and Feng-Zhou Fang, “Molecular dynamics simulations of nanometric cutting mechanismsof amorphous alloy”, Applied Surface Science, Vol 317,pp.432-442(2014).
    26.M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications”, Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
    27.J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Royal Society of Physical Character, London, Series A, Vol. 106, No. 738, pp. 441-462 (1924).
    28.J. E. Lennard-Jones, “On the Determination of Molecular Fields.-II.From the Equation of State of a Gas”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,Vol. 106, No. 738, pp. 463-477 (1924).
    29.P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels”, Phtsical Review,Vol. 34,pp.57-64 (1929).
    30.L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No.3, pp. 687-690 (1959).
    31.M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Phys. Rev. Lett., Vol. 50, No.17, pp. 1285-1288 (1983).
    32.M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defectsin in Metals”, Phys. Rev. B, Vol. 29, No.12, pp. 6443-6453 (1984).
    33.F. Cleri and V. Rosato, “Tight-binding potenials for transition metals and alloys”, Physical Review B,Vol. 48,No.1, pp. 22-33 (1993).
    34.C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, NJ,(1971).
    35.J. M. Haile, “Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication) ”, John Wiley & Sons, Inc, USA,pp.81-85(1992).
    36.J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics”, J. Mater. Process. Technol., Vol.59, pp. 309-314 (1996).
    37.C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation”, Physical. Review B, Vol. 58, No. 17, pp. 11085-11088 (1998).
    38.黃崇偉, “分子動力學模擬不同晶體結構與晶面效應對擴散接合之機械行為影響”, 國立台灣科技大學碩士論文(2012).
    39.J. M. Haile, “Molecular Dynamics Simulation”, A Wiley-Interscience Publication, pp.260-263 (1992).
    40.H. Tsuzuki, P. S. Branicio and J. P. Rino, “Structural characterization of deformed crystals by analysis of common atomic neighborhood”, Computer Physics Communications.177, pp.518-523(2007).
    41.林岳宗, “分子動力學模擬原子鎢/鎳濺鍍在銅基材上之薄膜成長行為”, 國立台灣科技大學碩士論文(2015).
    42.廖凱民, “分子動力學模擬不同冷卻速率之銅銀合金的結晶行為與切削性”, 國立台灣科技大學碩士論文(2013).
    43.A. Stukowski , “Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul”, Mater. Sci. Eng. 18, 015012(2010).
    44.A. M. Guellil and J. B. Adams, “The Application of The Analytic Embedded Atom Method to BCC Metals and Alloys”, Journal of Materials Research Sociery, Vol.7, No.3, pp.639-652(1992).
    45.M.A. Karolewski, “Tight-binding potentials for sputtering simulations with fcc and bcc metals”, Radiation Effects and Defects in Solids 153, pp.239-235 (2001).
    46.Vaclav Vitek and David J. Srolovitz, “Atomistic Simulation of Materials Beyond Pair Potentials”, World Materials Congress, ASM,(1988).
    47.Y. Gan and J.K. Chen, “Molecular dynamics study of size, temperature and rate dependent thermomechanical properties of copper nanofilms”, Mechanics Research Communications, Vol 36, pp. 838,(2009)
    48.林宇廷,“分子動力學模擬不同晶體結構之薄膜於銅基材的奈米壓印行為” , 國立台灣科技大學碩士論文(2014).
    49.A. S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metall,Vol.27,pp.47-58(1978).

    QR CODE