簡易檢索 / 詳目顯示

研究生: 王建鈞
Jian-jyun Wang
論文名稱: AFM探針切削單晶矽V型溝槽之下壓力和切削力及塑性熱源產生溫度分佈模擬分析
Simulation and analysis on down force and cutting force and distribution of temperature produced from plastic heat for cutting of V-shaped groove on single-crystal silicon by AFM probe
指導教授: 林榮慶
Zone-ching Lin
口試委員: 許覺良
Chaug-liang Hu
傅光華
Guang-huaFu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 111
中文關鍵詞: 分子靜力學奈米級切削單晶矽溫度AFM探針
外文關鍵詞: molecular statics, nanoscale cutting, single-crystal silicon, temperature, AFM probe
相關次數: 點閱:398下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展之分子靜力學三維準穩態奈米級切削模擬模式,進行以AFM探針之圓錐刀具奈米切削第一道次及第二道次之單晶矽V型溝槽之模擬分析,並探討AFM探針之圓錐刀具對第一道次及第二道次不同的切削深度切削單晶矽V型溝槽所產生之下壓力與切削力的影響,本文創新模擬三維準穩態分子靜力學奈米級切削模擬模式模擬切削第二道次,首先材料假設為一個尚未切割的完整晶格單晶矽材料,被切削過第一道次,而產生了一道V型溝槽,並假設忽略第一道次切削過程中所造成的原子堆積,而第二道次所使用的分子靜力學三維準穩態奈米奈米切削模式,所撰寫的第二道次切削主程式使用的編碼方式,是當在編碼時,由原始單晶矽工件中完整的各原子之編碼,去除第一道次V型溝槽移除之原子,並判別其移除原子之位置及原始編碼,再將其從原始編碼中移除,再將此原子後面編碼的原子依順補上新的編碼以完成第二道次各原子的編碼。依此新的第二道次各原子編碼,再對第二道次V型溝槽進行切削模擬,而模擬出第二道次V型溝槽之切削力與下壓力。本文再應用原子力顯微鏡(AFM)鑽石探針為刀具,進行奈米切削單晶矽基板表面V型溝槽之實驗及分析,以不同軸向比下壓能之觀念,使用單晶矽基板奈米級V型溝槽的切削力與下壓力之理論模式,估算第一道次及第二道次V型溝槽之切削力與下壓力,並與前述的分子靜力學三維準穩態奈米級切削模擬模式模擬第一道次與第二道次V型溝槽所得之切削力與下壓力比較,驗證本文的模擬模式及結果為合理的。本文應用力平衡之概念,求出原子變形位移的位置之後,配合本文有限元素的形狀函數概念,對晶格分割出等應變四面體,即可求得切削工件之三維等效應變。再配合奈米級薄膜拉伸數值實驗之應力-應變曲線經回歸處理後所得之塑流應力-應變(flow stress – strain)關係式,帶入後得到等效應力。本文所發展之塑性變形熱可由被切削工件單晶矽之等效應力與等效應變之乘積計算出。本文將各元素所計算塑性熱源之提升溫度,再進一步平均到各原子上,得到原子位置節點的提升溫度。再加上假設之室溫,即可得到單晶矽塑性熱源,所產生最後溫度場之分佈。


    The paper develops a simulation model of three-dimensional quasi-steady molecular statics nanocutting to carry out simulation and analysis of nanocutting of V-shaped groove on single-crystal silicon (Si) for the 1st and 2nd passes by a conic cutting tool of AFM probe, and explores the effects of the conic cutting tool of AFM probe on the down force and cutting force produced on V-shaped groove of single-crystal Si at different cutting depths during the 1st and 2nd passes. The paper innovatively simulates cutting of the 2nd pass using simulation model of three-dimensional quasi-steady molecular statics nanocutting. First of all, the material is supposed to be a complete-lattice single-crystal material not being cut yet. After it has been cut for one pass, a V-shaped groove is produced. It is supposed to neglect accumulation of atoms caused by 1st cutting process. For the model of three-dimensional quasi-steady molecular statics nanocutting used for the 2nd pass, the coding way used in the written main progrom of the 2nd cutting pass is that during coding of the various perfect atoms in the original single-crystal Si workpiece, the atoms removed from V-shaped groove during the 1st pass is taken away, and the positions and original codes of the removed atoms are distinguished. After they are removed from the original codes, the atoms coded after these atoms are sequentially added with new codes, completing the coding of different atoms for the 2nd pass. Based on the new coding for different atoms of the 2nd pass, simulation of cutting of V-shaped groove is carried out for the 2nd pass, and the cutting force and down force on V-shaped groove during the 2nd pass are simulated. The paper further applies AFM diamond probe as a cutting tool to conduct experiment and analysis of nanocutting of V-shaped groove on the surface of single-crystal Si substrate. Employing the concept of specific down force energy (SDFE) of different axles, the paper uses SDFE theoretical models of different axes of estimating cutting force and down force for nanocutting of V-shaped groove on single-crystal Si substrate, and estimates the cutting force and down force for cutting of V-shaped groove during the 1st and 2nd passes. The estimated results are compared with the cutting force and down force obtained from simulation of cutting of V-shaped groove for the 1st and 2nd passes using the abovementioned simulation model of three-dimensional quasi-steady molecular statics nanocutting, veritying that the simulation model and simulation results of the paper are reasonable. After applying the concept of force balance to find the positions of the deformed and displaced atoms, the paper uses the concept of shape function of finite element to divide the lattices in an equivalent-strain tetrahedron, and acquire three-dimensional equivalent strain of the cut workpiece. After regression treatment of stress-strain curve in the experiment of numerical value of nanoscale thin film tension, the flow stress-strain relational equation is achieved. After substitution, equivalent stress is acquired. The plastic deformation heat developed by the paper can be calculated by achieving the product from multiplying the equivalent stress by the equivalent strain of the cut single-crystal Si workpiece. The paper further equalizes the increased temperature of plastic heat calculated from different elements onto different atoms. Then the increased temperature at the position nodes of atoms can be acquired. After addition of the supposed room temperature, the distribution of final temperature field produced from plastic heat of single-crystal Si can be obtained.

    目錄 摘要 I Abstract III 自謝 V 圖表索引 X 第一章 緒論 1 1.1前言 1 1.2 研究動機及目的 2 1.3 文獻回顧 5 1.3.1 奈米級切削及切削工件溫度場的文獻 5 1.3.2 分子力學之文獻 8 1.4 本文架構 11 第二章 三維準穩態分子靜力學奈米級切削模式 14 2.1分子靜力學之基本原理 14 2.1.1 分子作用力及勢能函數 15 2.1.2 截斷半徑法 17 2.1.3物理參數 19 2.1.4虎克 吉夫斯(Hooke-Jeeves)搜尋法 19 2.1.5奈米級切削力之計算 21 2.2等效應變及等效應力計算方法 25 2.2.1等效應變之計算 25 2.2.2等效應力之計算 31 2.3.被切削工件之塑性熱源產生之提升溫度計算 32 2.3.1塑性變形熱之提升溫度計算方法 33 第三章 不同軸向比下壓能之理論模式 34 3.1建立不同軸向之比下壓能理論模式及計算比下壓能方法 34 3.2 比下壓能理論模式及計算比下壓能方法 38 第四章 模擬模型的建構 40 4.1有限元素法形狀函數概念與三維變形理論奈米切削模式 40 4.2第一道次奈米切削模擬條件的設定 54 4.3第二道次奈米切削模擬條件設定 56 第五章 結果與討論 59 5.1 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽第一道次之切削力及下壓力 61 5.1.1奈米級切削單晶矽V型溝槽第一道次之模擬結果 61 5.1.2奈米級切削單晶矽V型溝槽第一道次之下壓力與切削力模擬結果與應用不同軸向比下壓能理論計算結果之驗證 65 5.2 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽第二道次之切削力及下壓力案列探討 69 5.2.1 奈米級切削單晶矽V型溝槽第二道次之模擬結果 71 5.2.2 奈米級切削單晶矽V型溝槽第二道次之下壓力與切削力模擬結果與應用不同軸向比下壓能理論計算結果之驗證 74 5.3 分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽的等效應變與等效應力之分析 78 5.3.1奈米級切削第一道次單晶矽V型溝槽之等效應力與等效應變分析 78 5.3.2奈米級切削第二道次單晶矽V型溝槽之等效應力與等效應變分析 81 5.4分子靜力學三維準穩態奈米級切削模擬模式模擬切削單晶矽之切削溫度計算結果與探討 83 5.4.1奈米級切削第一道次單晶矽V型溝槽之溫度分佈分析 84 5.4.2奈米級切削第二道次單晶矽V型溝槽之溫度分佈分析 94 第六章-結論 102 6.1結論 102 6.2建議 105 參考文獻 107

    [1]. Lin, Z. C. and Hsu, Y. C., “Analysis on Simulation of Quasi-steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-crystal Copper,” CMC: computers, Materials, & continua , Vol. 27, No. 2, pp. 143-178 ,(2012).
    [2]. Rentsch, R. and Inasaki, I.,” Effects of Fluids on the Surface Generation in Material Removal Processes-Molecular Dynamics Simulation,’’ Annals CIRP , Vol.55 pp: 601-604(2006).
    [3]. Shimada, S., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining,” Ann. CIRP, Vol.41, No. 1, pp.117-120,(1990).
    [4]. Childs, T. H. C. and Maewaka, K., “Computer-aided Simulation and Experimental Studies of Chip Flow and Tool Wear in the Turning of Flow Alloy Steels by Cemented Carbide Tools” ,Wear, Vol. 139, Issue2, pp. 235-250,(1990).
    [5]. Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process,” Proc. Am. Soc., Precision Eng., pp.76-79,(1990).
    [6]. Kim, J. D. and Moon, C. H., “A study on microcutting for the configuration of tools using molecular dynamics,” Journal of Materials Processing Technology , Vol.59, No.4, pp. 309-314, (1995).
    [7]. Fang, F. Z., Wu, H., Zhou, W., and Hu, X. T., “A study on mechanism of nano-cutting single crystal silicon,” Journal of Materials Processing Technology,vol.184,No.1-3,pp. 407-410 ,(2007).
    [8]. Pei, Q. X., Lu, C., Fang, F. Z., and Wu, H., “Nanometric cutting of copper: A molecular dynamics study,” Computational Materials Science, Vol.37, No.4, pp.434-441,(2006).
    [9]. Inamura, T. and Takezawa, N., “Cutting Experiments in a Computer Using Atomic Models of a Copper Crystal and a Diamond Tool,” Int. J. Japan Soc. Prec. Eng., Vol. 25, No. 4, pp. 259-266(1991).
    [10]. Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond,” Annals of the CIRP, Vol. 41, No. 1, pp. 121-124,(1992).
    [11]. Inamura, T., Takezawa, N., and, Kumaki, Y., “Mechanics and energy dissipation in nanoscale cutting,” Annals. CIRP, Vol.42, No.1, pp.79-82,(1993).
    [12]. Cai, M. B., Li, X. P., and Rahman, M., “ Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation,” International Journal of Machine Tool & Manufacture ,Vol. 192–193, pp.607–612, (2007).
    [13]. Cai, M. B., Li, X. P., and Rahman, M., “ Characteristics of dynamic hard particles in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear,” Wear ,Vol.263,Issue7-12,pp.1459-1466,(2007).
    [14]. Cai, M. B., Li, X. P., and Rahman, M., “ Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation,” Journal of Materials Processing Technology,Vol.192-193,NO.1,pp.607-612,(2007).
    [15]. Tanaka, H. and Shimada, S., “ Requirements for Ductile-mode Machining Based on Deformation Analysis of Mono-crystalline Silicon by Molecular Dynamics Simulation,” Annals of the CIRP, Vol.56, pp.53-56,(2007).
    [16]. Tang, Q. H., “ MD simulation of dislocation mobility during cutting with diamond tip on silicon,” Materials Science in Semiconductor Processing,Vol.10 ,pp.270-275,(2007).
    [17]. Shimada, S.,“Molecular dynamics analysis of nanometric cutting process,” Ann. CIRP, Vol.29, No.4, pp.283-289,(1995).
    [18]. Goel, S., Luo, X., Reuben, R. L., and Pen, H., “Influence of temperature and crystal orientation on tool wear during single point diamond turning of silicon,” Wear, Vol.284-285, NO.25, pp.65-72,( 2012).
    [19]. Lin, Z. C. and Huang, J. C., “A nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique,” Nanotechnology, Vol. 15, pp. 510-519,(2004).
    [20]. 沈鈺恆,「奈米級正交切削單晶矽三維溫升模式與分析」, 國立台灣科技大學大學機械工程研究所,碩士論文,民國101年。
    [21]. Irving, J. H. and Kirkwood, J. G., “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics,” J. Chem. Phys., Vol.18, pp. 817-829,(1950).
    [22]. Kwon, Y. W. and Jung, S. H., “Atomic model and coupling with continuum model for static equilibrium problems,” Computers and Structures, Computational Structures Technology, Vol.82, pp. 1993-2000,(2004).
    [23]. IGOR Ye. Telitchev, and OLEG Vinogradov ” A method for quasi-static analysis of topologically variable lattice structures,” International Journal of Computational Methods, Vol. 3, pp. 71-81, (2006).
    [24]. Jeng, Y. R., and Tan, C. M., “Study of Nanoindentation Using FEM Atomic Model,” Journal of Tribology, Vol. 126, pp. 767-774,(2004).
    [25]. Hu, S. Y., Ludwig, M., Kizler, P., and Schmauder, S., “Atomistic simulations of deformation and fracture of α-Fe,” Modelling Simul. Mater. Sci. Eng., Vol. 6, pp. 567–586, (1998).
    [26]. Saraev, D., Kizler, P., and Schmauder, S., “The influence of Frenkel defects on the deformation and fracture of alpha-Fe single crystals,” Modelling Simul. Mater. Sci., Eng.,Vol. 7, pp.1013–1023,(1999).
    [27]. 陳雨樵,「以分子模擬方法研究奈米線之機械性質」,國立中正大學機械工程研究所,碩士論文,民國九十五年。
    [28]. James, S. and Sundaram, M. M.,"A molecular dynamics study of the effect of impact velocity, particle size and angle of impact of abrasive grain in the Vibration Assisted Nano Impact-machining by Loose Abrasives," Wear ,Vol.303, Issue 1-2, pp. 510-518 , (2013).
    [29]. 黃維富,「銅鎳面心立方晶體之奈米切削能及切削力模式研究」,國立台灣科技大學大學機械工程研究所,博士論文,民國九十五年。
    [30]. 林榮慶,簡辰學, 林孟樺,「具空孔缺陷之單晶矽材料之三維分子靜力學奈米級正交切削研究」, SME,論文編號:B9,p.20,(2010)
    [31]. Lin, Z. C. and Hsu, Y. C.,” Simalation Analysis and Experiment Study of Nanocutting with AFM Probe on the Surface of Sapphire Substrate by Using Three Dimensional Quasi-Steady Molecular statics Nanocutting Madel,” CMC, vol.25, No.1, pp.75-106, (2011).
    [32]. Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, pp. 687-690,(1959).
    [33]. Rahman, A., “Correlations in motions of atoms in liquid atom,” Phys. Rev.,A,Vol.136,pp.405-411,(1964).
    [34]. David, L. M., Donald, L. T., and Lionel, M. R., "Theoretical Studies of Termolecular Thermal Recombination of Silicon Atoms," J. Chem. Phys. 84, 4426-4428 (1986).
    [35]. Reklaitis, G. V., Engineering Optimization: Methods and Application, Wiley; 2 edition ,USA ,(2006).
    [36]. Aly, M. F., Ng, E., Veldhuis, S. C., and Elbestawi, M. A., “Prediction of Cutting Forces in the Micro-machining of Silicon Using a Hybrid Molecular Dynamic-finite Element Analysis Force Model,” International Journal of Machine Tools and Manufacture, Vol 46, pp.1727–1739 ,(2006).
    [37]. 林建廷,「應用比下壓能及改變下壓力之單晶矽奈米流道凹槽加工模擬模式建立與實驗研究」,國立台灣科技大學大學機械工程研究所,碩士論文,民國102年。

    無法下載圖示 全文公開日期 2018/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE