簡易檢索 / 詳目顯示

研究生: 張家峻
Jia-Jun Zhang
論文名稱: 氮化鎵光偵測器結合Arduino藍芽模組應用於遠端警示
GaN-based photodetector combined with Arduino Bluetooth module for remote warning
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 葉秉慧
Pinghui Sophia Yeh
李志堅
Chih-Chien Lee
徐世祥
Shih-Hsiang Hsu
周錫熙
hsi-hsir.chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 143
中文關鍵詞: 氮化鎵光偵測器光電晶體
外文關鍵詞: GaN, photodetector, phototransistor, Arduino
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文主要研究氮化鎵光偵測器與LED警示燈模組,在功能上做應用端的延伸以及元件改良,使研發模組具有更好的元件性能以及多樣的應用端功能,來實現未來商業化的可能性。
  在模組元件氮化鎵光偵測器與LED的特性上,量測實驗室製作的元件;包括兩種紫外光偵測器元件(p-i-n結構光偵測器以及n-p-i-n結構之光電晶體)的光電特性,暗電流大小、外部量子效率在不同偏壓下的響應率;以及量測兩種顯示端元件(發光二極體及七段顯示器)的光電特性,包括I-V、L-I效率曲線。
  在模組功能應用端上,本研究結合微電腦控制板-Arduino,來延伸出進階的應用功能;藉由去年實驗室設計出的OPA電流-電壓放大電路輸出之電壓值,透過Arduino微電腦板類比電壓讀取功能,讀取電壓訊號,並撰寫程式定義紫外光危害區間,做危害分級程度。輸出端則利用七段顯示器,顯示其危害警示程度。
  由於紫外光是無法透過人眼來得知其強弱,在不知情狀況下,常常已經受到紫外線危害,所以另一項模組設計結合Arduino微電腦板及藍芽模組功能,將此危害程度,透過藍芽傳輸的方式,來達到遠端警示功能,提早做預防保護,例如當偵測到室內正在使用紫外線燈消毒,門口立即閃爍警示燈,本研究做出了一個原型機。


  This paper mainly develops GaN based photodetectors and LED warning light modules. The applications extension and component improvements are made in terms of function, so that the module has better component performance and diverse application functions, we want to success to develop a product in the future.
  In terms of the characteristics of the GaN photodetectors module and LED components, measure the components made in the lab; including two types of UV photodetector (p-i-n structure photodetector and n-p-i-n structure phototransistor) the characteristics about dark current, response time and external quantum efficiency, under different biases; and measure the characteristics of two display components (light-emitting diodes and seven-segment displays), including I-V and L-I efficiency curves.
  On the application of the module function, this research combines the circuit board-Arduino to extend the advanced application functions; through the voltage value output by the OPA current-voltage amplifier circuit designed in the lab last year, through the Arduino board analog reading function, read the voltage signal, and write a program to define the UV hazard level, and do the hazard classification. The output terminal uses a seven-segment display to display the degree of hazard warning.
  The UV light cannot be known through the human eye, it is often harmed by UV light without knowing it. Therefore, another module design combines the functions of the Arduino board and the Bluetooth module to achieve this harm through the Bluetooth transmission is used to achieve the remote warning function, and preventive protection early. For example, when it is detected that an UV lamp is used for disinfection in the room, the door immediately flashes a warning light. This research has made a prototype.

摘要 v Abstract vi 致謝 viii 目錄 x 圖目錄 xii 表目錄 xvi 第一章 導論 1 1.1緒論 1 1.2 文獻回顧與動機 4 1.3市售紫外光偵測器模組介紹 20 第二章 光偵測器理論介紹 26 2.1 光偵測器工作原理 26 2.2 光偵測器架構分類 29 2.2.1 p-n接面光二極體(p-n Photodiode) 29 2.2.2 p-i-n接面光電二極體 32 2.2.3 蕭基位障光電二極體(Schottky Barrier Photodiode) 36 2.2.4雪崩型光二極體(Avalanche Photodiode) 38 2.3 光偵測器檢測參數 44 2.3.1 量子效率(Quantum Efficiency,QE) 44 2.3.2 響應率(Responsivity,R) 47 2.3.3 響應速度(Response Speed) 48 2.3.4 拒斥比(Rejection Ratio) 48 第三章 元件設計與量測儀器介紹 49 3.1 光電元件設計 49 3.2 元件製程 52 3.3 量測儀器介紹 54 3.3.1 I-V與L-I量測系統 54 3.3.2外部量子量測系統(Incident photon to electron conversion efficiency,IPCE) 55 3.3.3七位半圖形化取樣萬用電錶(7-1/2 Digit Graphical Sampling Multimeter) 57 3.3.4 脈衝式雷射二極體LIV系統(Pulsed Laser Diode Test System) 59 3.3.5 電源供應器(Source Meter) 61 3.3.6 紫外光燈具254nm(UV Lamp) 64 第四章 Arduino微電腦控制板功能設定 66 4.1 Arduino介紹 66 4.1.1Arduino UNO微電腦控制板 66 4.1.2Arduino讀取類比信號 71 4.2 藍芽模組介紹 73 4.2.1藍芽模組(HC-05、HC-06)功能介紹與設定 74 4.2.2 Arduino序列阜監控視窗 81 第五章紫外光偵測器透過Arduino藍芽傳輸危害警示裝置 84 5.1系統整合架構圖 84 5.2紫外光偵測器透過Arduino藍芽傳輸危害警示裝置設計結果與討論 86 5.2.1 氮化鎵LED七段顯示器I-V&L-I量測 86 5.2.2 氮化鎵p-i-n光偵測器外部量子效率量測 88 5.2.3氮化鎵n-p-i-n光電晶體外部量子效率量測 97 5.2.4 市售紫外光模組(Groove-UV Sensor)特性量測實驗 107 5.2.5Arduino發送端-讀取類比電壓並發送資料 116 5.2.6 Arduino接收端-接收資料並透過LED發出警告訊息 119 第六章 結論與未來展望 124 6.1結論 124 6.2未來展望 126 參考文獻 127

[1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny-GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916-921, Oct. 2008.
[2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617-622, Jun. 2009.
[3] YongjinWanga, Yin Xu, Yongchao Yang, Xumin Gao, Bingcheng Zhu, Wei Cai, JialeiYuan,RongZhangb, Hongbo Zhu. Simultaneous light emission and detection of InGaN/GaN multiplequantum well diodes for in-plane visible light communication. Optics Communications 387,440–445. 2017
[4] Wei Cai, Chuan Qin, Shuai Zhang, Jialei Yuan, FenghuaZhangand
Yongjin Wang. Monolithic photonic integrated circuit with a GaN-based bent waveguide.
[5] Meixin Feng, Jin Wang, Rui Zhou, Qian Sun, Hongwei Gao, Yu Zhou,Jianxun Liu, Yingnan Huang, Shuming Zhang, Masao Ikeda, Huaibing Wang, Yuantao Zhang, Yongjin Wang, and Hui Yang. “On-Chip Integration of GaN-Based Laser, Modulator,and Photodetector Grown on Si,” IEEE Journal Of Selected Topics In Quantum Electronics24(6) , 820-305. 2018
[6] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, and S. Verghese, “GaN avalanche photodiodes grown by hydride vaporphase epitaxy,” Appl. Phys. Lett.75, 3485, Oct. 1999.
[7] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Low dark current GaN avalanche photodiodes,’’ IEEE J. Quantum Electron., vol. 36, no. 12, pp. 1389-1391, Dec. 2000.
[8] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, “GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 011112, Jun. 2006.

[9] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Photo response and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer,” Jpn. J. Appl. Phys. 40, L498, May 2001.
[10] M. L. Lee, J. K. Sheu, Yung-Ru Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio”, Appl. Phys. Lett. 92, 053506, Feb. 2008.
[11] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li, Optimization of GaN/InGaN Heterojunction Phototransistor”, IEEE Photon Technol Lett, vol. 29, no. 4, pp. 373-376, Feb. 2017.
[12] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617-622, Jun. 2009.
[13] E. Fred Schubert, “Light-emitting diode.” Cambridge University Press, New York, 2006
[14] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,’’ Appl. Phys. Lett., vol. 94, 221109, Jun. 2009.
[15] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70Np-i-n photodiodes,’’ Appl. Phys. Lett. vol. 77, 2810, Feb. 2000.
[16] Yi-Ting Huang, Pinghui S. Yeh, Yen-Hsiang Huang, Yu- Ting Chen, Chih-Wei Huang, Cong Jun Lin, and Wenchang Yeh, “High Performance InGaN p-i-n Photodetectors Using LED Structureand Surface Texturing, ’’ IEEE Photon Technology Lett, vol. 28, no. 6, pp. 605-608, Mar. , 2016.
[17] Shen, S-C, Kao, T-T, Kim, H-J, Lee, Y-C, Kim, J, Ji, M-H, Ryou, J-H,Detchprohm, T, Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, vol.8, 032101, Feb. 2015.
[18]K.-Y. Liou, U. Koren, S. Chandrasekhar, T. L. Koch, A. Shahar, C. A. Burrus, R. P. Gnall, “Monolithic integrated InGaAsP/InPdistributed feedback laser with Y-branchingwaveguide and a monitoring photodetectorgrown by metalorganic chemical vapordeposition ”Appl. Phys. Lett. Vol 54,114;Aug.1998.
[19]Ching-Hui Chen, Si-Chen Lee “Monolithic integration of an AlGaAs/GaAs surface emitting laser diode and a photodetector” Appl. Phys. Lett. Vol 59, 3592;Aug. 1998.
[20] Anand Nayyar; Vikram Puri “A review of Arduino board's, Lilypad's & Arduino shields” 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016
[21]RoithnerLasertechnik, “UV Sensor Modules based on AlGaN.” GUVB-T11GM-LA datasheet, Aug. 2018
[22]RoithnerLasertechnik, “UV Sensor TIA based on GaN.” GUVA-T21GH datasheet
[23]Grove-UV Sensor UV 紫外線感測器 seeed原廠
[24]紫外線指數預報服務,中央氣象局。
[25]GLOBAL SOLAR UV-INDEX,WHO。
[26]S.O.Kasap,Optoelectronics and Photonics: Principles and Practices.Peason Education International,2001.
[27] S. O. Kasap, Optoelectronics and Photonics:Principles Practices半導體光電元件,全威圖書有限公司,台北,2006。
[28] 劉博文,光電元件導論,全威圖書有限公司,台北市,2005。
[29] 孫駿榮,最簡單的互動設計Arduino一試就上手,碁峯資訊有限股份公司,台北,2012。
[30]趙英傑,Arduino互動設計入門,旗標股份有限公司,台北,2013。

無法下載圖示 全文公開日期 2025/07/24 (校內網路)
全文公開日期 2025/07/24 (校外網路)
全文公開日期 2025/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE