簡易檢索 / 詳目顯示

研究生: 陳顥文
Haw-Wen Chen
論文名稱: 探討硒化照射程序製備銅銦鎵薄膜太陽能電池之研究
Investigation of Se irradiation process for Cu(In,Ga)Se2 solar cells
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 洪儒生
Lu-Sheng Hong
山田明
Akira Yamada
陳良益
Liang-Yih Chen
葉秉慧
Ping-hui Yeh
呂宗昕
Chung-Hsin Lu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 148
中文關鍵詞: 銅銦鎵硒薄膜太陽能電池硒化照射螢光光譜時間解析光激螢光光譜空位缺陷
外文關鍵詞: CIGS thin-film solar cell, Se irradiation, Photoluminescence, Time-Resolved Photoluminescence, Defect vacancy
相關次數: 點閱:1023下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以硒化照射程序所影響的缺陷分佈和本質缺陷的相互作用作為探討的議題,針對導入硒化照射程序的特性,開發其照射程序對於缺陷抑制的機制及效果。論文中以螢光光譜解析觀察缺陷抑制的變化,並探討缺陷對於硒化銅銦鎵薄膜的品質及太陽能電池效率的影響。
    硒化照射程序,此一技術乃由所屬東京工業大學山田 明教授研究室的西村 昂人所開發。此一照射程序乃在三階段製備法的第二階段後引入。該程序透過控制CIGS薄膜沉積時的Cu2Se層,進而有效抑制少數載子在CIGS層和CdS層之間的界面處複合。硒化照射程序的效果已由西村 昂人所詳敘報導。
    本實驗以分子束磊晶設備並透過共蒸發法來製備硒化銅銦鎵薄膜,依序製備有無導入硒化照射程序的樣品並將其製作成 Al / ZnO / CdS / CIGS / Mo / SLG的CIGS太陽能電池結構,發現對於有導入硒化照射程序的樣品,其光電轉換效率約為17%,而對於未導入硒化照射程序的樣品,其光電轉換效率為16%。透過低溫(80K)下所測量的螢光光譜,明顯觀察到導入引入硒化照射程序時,缺陷所對應的峰強度明顯下降。此外,透過改變激發功率,PL光譜中的變化因硒化照射程序的導入,而有不同的變化。這樣的差異可歸因於硒化照射程序抑制缺陷的形成。
    本論文根據時間解析光譜的量測結果,發現有導入硒化照射程序的樣品,其載子生命週期為92.3 ns較未導入硒化照射程序的樣品(72.3 ns)長許多.最後,透過軟體SCAPS的模擬,論證其缺陷對於CIGS太陽能電池的影響,而模擬的結果也與論文中的實驗數據相符。


    In this thesis, the influence of Se irradiation procedure on the defect distributions and the interaction of intrinsic defects in the CIGS thin-film were studied. The difference of the films properties between the samples prepared with and without the Se irradiation procedure was investigated through the morphology change and electrical characteristic. Photoluminescence (TR-PL) was used for investigating the defect properties in CIGS thin-film solar cell and using time-resolved photoluminescence to estimate the minority carrier lifetime for CIGS thin-film.
    The Se irradiation procedure, which was developed by Takahito Nishimura from the laboratory of Akira Yamada, Tokyo Tech. The Se irradiation procedure was introduced after the second stage of the three-stage method. The procedure controls the Cu2Se layer during CIGS deposition, which leads to suppressing the recombination of minority carrier at the interfaces between the CIGS layer and the CdS layer.
    In this dissertation, the samples prepared with and without the Se irradiation procedure was fabricated by the co-evaporation process using molecular beam epitaxy (MBE). Then, the CIGS solar cells with a Al/ZnO/CdS/CIGS/Mo/SLG structure were fabricated, the conversion efficiency (η) for the samples prepared with the Se irradiation procedure was 17%, which is higher than that (16%) of the samples prepared without the Se irradiation procedure. Through the photoluminescence (PL) spectra measured at a low temperature of 80K, the peak intensity which corresponding to the defects were significantly decreased after introducing the Se irradiation procedure. Furthermore, by examined the PL spectra of CIGS via variation of excitation power, the peak intensity of the samples prepared with and without the Se irradiation procedure showed different behavior. Such a difference could attribute the suppression of defect formation to the Se irradiation procedure.
    According to the results of time-resolved photoluminescence (TR-PL), the bulk recombination lifetime was 92.3 ns for the sample prepared with the Se irradiation procedure, which is longer than that (72.3 ns) of the sample prepared without the Se irradiation procedure. Last, with the computer simulations, SCPAS, it is clear that the defects have a negative impact on solar cells performance, which matches our experimental data. Our results suggest that the critical effect of Se irradiation procedure, the procedure build a better quality of CIGS film by reducing the amount of the defects.

    中文摘要 (Abstract in Chinese) I Abstract III Acknowledgments V Table of contents VI List of Figures IX List of Tables XIII List of Equations XIV Chapter 1. Introduction 1 1.1 Overview 1 1.1.1 Energy consumption and its transition 1 1.1.2 Finite Energy Recourses 7 1.1.3 Environmental Issues 9 1.1.4 Renewable Energy 11 1.1.5 Current Status of Photovoltaics 15 1.1.6 Roadmap PV challenges in CIGS thin-film solar cell 18 1.2 Aims and outline of this thesis 20 Chapter 2. Fundamental properties of Cu(In, Ga)Se2 solar cells 22 2.1 Material properties of Cu(In, Ga)Se2 23 2.1.1 Structural properties of Cu(In, Ga)Se2 23 2.1.2 Phase diagram 25 2.1.3 The relation between Lattice Constant and Bandgap 28 2.1.4 Absorption Coefficient 33 2.1.5 Defect physics of Cu(In,Ga)Se2 34 2.2 Fabrication of Cu(In, Ga)Se2 solar cells 37 2.2.1 Structure of Cu(In, Ga)Se2 solar cells and general device properties 37 2.2.2 Three-stage method 41 2.2.3 Introduction of Se irradiation process 44 Chapter 3. Materials, Equipment and Characterization Techniques 47 3.1 Materials 47 3.1.1 Cleaning Process 47 3.1.2 Molecular Beam Epitaxy (MBE) 48 3.1.3 Chemical Bath Deposition 50 3.1.4 Metal-organic Chemical Vapor Deposition 52 3.1.5 Evaporator 54 3.2 Experimental system 55 3.2.1 Molecular beam epitaxy (MBE) 55 3.2.2 Chemical Bath Deposition (CBD) 56 3.2.3 Metal-organic Chemical Vapor Deposition 57 3.2.4 Evaporator 58 3.3 Experimental procedures 59 3.3.1 Samples preparation and cleaning 59 3.3.2 The three-stage method by molecular beam epitaxy (MBE) 61 3.3.3 Buffer layer by chemical bath deposition 64 3.3.4 Transparent conducting films fabrication by Metal-organic chemical vapor deposition (MOCVD) 66 3.4 Characterization Techniques 67 3.4.1 Composition, Surface morphology and thickness of the films 67 3.4.2 Electrical characterization of films 69 3.4.3 Further characterization methods 77 Chapter 4. Impact of introducing Se irradiation on defect suppression of CIGS 81 4.1 Basic of Se irradiation procedure 81 4.1.1 Introduction of Se irradiation process 81 4.1.2 Procedure of Se irradiation 83 4.2 Influence of the Se irradiation procedure on film property 85 4.2.1 Structural property 85 4.2.2 Optical properties and solar cell performance 88 4.3 Defect suppression mechanism of the Se irradiation procedure 92 4.3.1 Influence of Se irradiation procedure on Photoluminescence spectrum 92 4.3.2 Influence of excitation power on photoluminescence spectrum 97 4.3.3 Influence of deep defects on C-V measurement 101 4.3.4 Time-resolved photoluminescence analysis for the CIGS-based solar cells performance 104 4.4 The implication of deep defects for CIGS solar cell performance by SCAPS simulation 107 4.4.1 Influence of the defect density on solar cell performance 108 4.4.2 PV performance analysis with different defect states 114 Chapter 5. Conclusions and prospects 118 Chapter 6. References 120

    [1] P. D. United Nations, Department of Economic and Social Affairs, “World Population Prospects The 2017 Revision Key Findings and Advance Tables,” World Popul. Prospect. 2017, pp. 1–46, 2017.
    [2] British Petroleum, “BP Statistical Review of World Energy 2017,” Br. Pet., no. 66, pp. 1–52, 2017.
    [3] MBA智庫百科, “新能源(New Energy).”
    [4] “World Energy Outlook 2017,” 2017.
    [5] “World Energy Balances 2017,” 2017.
    [6] World Energy Council, “World Energy Resources 2016,” World Energy Resour. 2016, pp. 1–33, 2016.
    [7] M. Inman, “Natural gas: The fracking fallacy : Nature News & Comment,” Nat. News Featur., December 2014, p. 8, 2014.
    [8] IPCC, Summary for Policymakers. 2014.
    [9] J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, “Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels,” Proc. Natl. Acad. Sci., vol. 103, no. 30, pp. 11206–11210, 2006.
    [10] J. A. Turner, “A Realizable Renewable Energy Future,” Science ., vol. 285, no. 5428, pp. 687–689, 1999.
    [11] N. S. Lewis, “Powering the Planet,” Mater. Res. Soc. Spring Meet., vol. 32, no. 10, pp. 808–820, 2007.
    [12] T. Sueto, Y. Ota, H. Nagai, K. Araki, and K. Nishioka, “Installation guidepost of concentrator photovoltaic system using scattering ratio and global solar irradiance,” vol. 81, no. 3, p. 2012, 2012.
    [13] T. Burton, Wind energy handbook. Wiley, 2011.
    [14] German Advisory Council on Global Change, World in Transition – Towards Sustainable Energy Systems. 2003.
    [15] P. V. Kamat, “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion,” J. Phys. Chem. C, vol. 111, no. 7, pp. 2834–2860, 2007.
    [16] N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci., vol. 103, no. 43, pp. 15729–15735, 2006.
    [17] “Global Solar Atlas - Downloads,” globalsolaratlas.info, 2016. [Online]. Available: http://globalsolaratlas.info/downloads/world?c=23.145411,36.518555,2. [Accessed: 21-Jun-2018].
    [18] “How Does Solar Home Power Work - mySolar.” [Online]. Available: http://mysolar.com/how-does-solar-home-power-work/. [Accessed: 21-Jun-2018].
    [19] E. Payback and C. P. V Systems, “What is the energy payback for PV ?”
    [20] “First Solar Builds the Highest Efficiency Thin Film PV Cell on Record | First Solar, Inc.,” First solar, 2014. [Online]. Available: http://investor.firstsolar.com/news-releases/news-release-details/first-solar-builds-highest-efficiency-thin-film-pv-cell-record. [Accessed: 24-Jun-2018].
    [21] W. S. Yang, B. Park, E. H. Jung, and N. J. Jeon, “Iodide management in formamidinium-lead-halide – based perovskite layers for efficient solar cells,” Science (80-. )., vol. 356, no. 6345, pp. 1376–1379, 2017.
    [22] T. M. Friedlmeier et al., “Improved Photocurrent in Cu ( In , Ga ) Se2 Solar Cells :,” pp. 7–9, 2015.
    [23] K. Sasaki, T. Agui, K. Nakaido, N. Takahashi, R. Onitsuka, and T. Takamoto, “Development Of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells,” AIP Conf. Proc., vol. 1556, pp. 22–25, 2013.
    [24] “Panasonic HIT(R) Solar Cell Achieves World’s Highest Energy Conversion Efficiency of 25.6% at Research Level | Headquarters News | Panasonic Newsroom Global.” [Online]. Available: http://news.panasonic.com/global/press/data/2014/04/en140410-4/en140410-4.html. [Accessed: 13-Jan-2018].
    [25] J. Zhao et al., “20 000 PERL Silicon Cells for the ` 1996 World Solar Challenge ’ Solar Car Race,” Prog. Photovoltaics Res. Appl., vol. 5, no. February, pp. 269–276, 1997.
    [26] L. Yalçin and R. Öztürk, “Performance comparison of c-Si, mc-Si and a-Si thin film PV by PVsyst simulation,” J. Optoelectron. Adv. Mater., vol. 15, no. 3–4, pp. 326–334, 2013.
    [27] S. K. David Brady, Steve Haymore, “First Solar, INC. Announces First Quarter 2014 Financial Results,” 2014.
    [28] H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” 2014 IEEE 40th Photovolt. Spec. Conf. PVSC 2014, pp. 2767–2770, 2014.
    [29] B. M. Kayes et al., “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 000004–000008, 2011.
    [30] L. S. Mattos et al., “New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 3187–3190, 2012.
    [31] S. Mathew et al., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nat. Chem., vol. 6, no. 3, pp. 242–247, 2014.
    [32] “Why Invest in CIGS Thin-Film Technology? – CIGS Thin-Film Photovoltaics.” [Online]. Available: http://cigs-pv.net/why-invest-in-cigs-thin-film-technology/. [Accessed: 03-Oct-2017].
    [33] S. Wagner, J. L. Shay, Migliora.P, and H. M. Kasper, “Culnse2-Cds Heterojunction Photovoltaic Detectors,” Appl. Phys. Lett., vol. 25, no. 1974, pp. 434–435, 1974.
    [34] L. L. Kazmerski, M. Hallerdt, P. J. Ireland, R. A. Mickelsen, and W. S. Chen, “Optical properties and grain boundary effects in CuInSe2,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 1, no. 2, pp. 395–398, 1983.
    [35] M. L. Fearheiley, “The phase relations in the Cu,In,Se system and the growth of CuInSe2 single crystals,” Sol. Cells, vol. 16, no. C, pp. 91–100, 1986.
    [36] M. L. Fearheiley, “The phase relations in the Cu,In,Se system and the growth of CuInSe2 single crystals,” Sol. Cells, vol. 16, pp. 91–100, Jan. 1986.
    [37] D. Schmid, M. Ruckh, and H. W. Schock, “A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures,” Sol. Energy Mater. Sol. Cells, vol. 41–42, pp. 281–294, 1996.
    [38] T. Haalboom et al., Phase relations and microstructure in bulk materials and thin films of the ternary system Cu-In-Se, vol. 152. 1998.
    [39] H. Neumann, “Optical properties and electronic band structure of CuInSe2,” Sol. Cells, vol. 16, pp. 317–333, Jan. 1986.
    [40] M. Turcu, I. M. Kötschau, and U. Rau, “Composition dependence of defect energies and band alignments in the Cu(In1-xGax)(Se1-ySy)2 alloy system,” J. Appl. Phys., vol. 91, no. 3, pp. 1391–1399, 2002.
    [41] M. Turcu and U. Rau, “Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system,” Thin Solid Films, vol. 431–432, no. 03, pp. 158–162, 2003.
    [42] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties,” Appl. Phys. Lett., vol. 72, no. 24, pp. 3199–3201, 1998.
    [43] S. H. Han, F. S. Hasoon, J. W. Pankow, A. M. Hermann, and D. H. Levi, “Effect of Cu deficiency on the optical bowing of chalcopyrite Culn1-xGaxSe2,” Appl. Phys. Lett., vol. 87, no. 15, pp. 1–3, 2005.
    [44] K. Ramanathan et al., “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovoltaics Res. Appl., vol. 11, no. 4, pp. 225–230, Jun. 2003.
    [45] C.-H. Huang, “Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling,” J. Phys. Chem. Solids, vol. 69, no. 2–3, pp. 330–334, Feb. 2008.
    [46] D. Ohashi, T. Nakada, and A. Kunioka, “Improved CIGS thin-film solar cells by surface sulfurization using In2S3and sulfur vapor,” Sol. Energy Mater. Sol. Cells, vol. 67, no. 1–4, pp. 261–265, 2001.
    [47] T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, “Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization,” Sol. Energy Mater. Sol. Cells, vol. 49, no. 1–4, pp. 285–290, 1997.
    [48] S. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, and H. Fujiwara, “Dielectric function of Cu(In, Ga)Se2 -based polycrystalline materials,” J. Appl. Phys., vol. 113, no. 6, p. 063505, Feb. 2013.
    [49] C. Rincón and R. Márquez, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” J. Phys. Chem. Solids, vol. 60, no. 11, pp. 1865–1873, 1999.
    [50] T. Negami, N. Kohara, M. Nishitani, T. Wada, and T. Hirao, “Preparation and characterization of Cu(In1− xGax)3Se5 thin films,” Appl. Phys. Lett., vol. 67, no. 6, pp. 825–827, Aug. 1995.
    [51] D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, “Chalcopyrite / defect chalcopyrite heterojunctions on the basis of CuInSe2 Chalcopyriteklefect chalcopyrite heterojunctions on the basis of CulnSea,” J. Appl. Phys., vol. 73, no. 1993, p. 20902, 1993.
    [52] G. Smestad, “Semiconductors for solar cells,” Sol. Energy Mater. Sol. Cells, vol. 43, no. 4, pp. 425–426, 1996.
    [53] S. B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B, vol. 57, no. 16, pp. 9642–9656, 1998.
    [54] J. Pohl and K. Albe, “Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 87, no. 24, pp. 1–16, 2013.
    [55] M. A. Contreras et al., “On the Role of Na and Modifications to Cu(In,Ga)Se2 Absorber Materials Using Thin-MF (M=Na, K, Cs) Precursor Layers,” 1997.
    [56] D. Rudmann et al., “Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation,” Appl. Phys. Lett., vol. 84, no. 7, pp. 1129–1131, Feb. 2004.
    [57] M. Cwil, M. Igalson, P. Zabierowski, and S. Siebentritt, “Charge and doping distributions by capacitance profiling in Cu(In,Ga)Se2 solar cells,” J. Appl. Phys., vol. 103, no. 6, p. 063701, Mar. 2008.
    [58] D.-H. Cho, K.-S. Lee, Y.-D. Chung, J.-H. Kim, S.-J. Park, and J. Kim, “Electronic effect of Na on Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett., vol. 101, no. 2, p. 023901, Jul. 2012.
    [59] A. Laemmle, R. Wuerz, and M. Powalla, “Efficiency enhancement of Cu(In,Ga)Se 2 thin-film solar cells by a post-deposition treatment with potassium fluoride,” Phys. status solidi - Rapid Res. Lett., vol. 7, no. 9, pp. 631–634, Sep. 2013.
    [60] L. E. Oikkonen, M. G. Ganchenkova, A. P. Seitsonen, and R. M. Nieminen, “Redirecting focus in CuInSe2 research towards selenium-related defects,” Phys. Rev. B, vol. 86, no. 16, p. 165115, Oct. 2012.
    [61] T. Sakurai et al., “Dependence of Se beam pressure on defect states in CIGS-based solar cells,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 1, pp. 227–230, Jan. 2011.
    [62] S. Lany and A. Zunger, “Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex,” J. Appl. Phys., vol. 100, no. 11, 2006.
    [63] M. Igalson, P. Zabierowski, D. Prządo, A. Urbaniak, M. Edoff, and W. N. Shafarman, “Understanding defect-related issues limiting efficiency of CIGS solar cells,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 8, pp. 1290–1295, Aug. 2009.
    [64] M. Igalson, A. Urbaniak, and M. Edoff, “Reinterpretation of defect levels derived from capacitance spectroscopy of CIGSe solar cells,” Thin Solid Films, vol. 517, no. 7, pp. 2153–2157, Feb. 2009.
    [65] A. Zunger, S. B. Zhang, and Su-Huai Wei, “Revisiting the defect physics in CuInSe2 and CuGaSe2,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997, pp. 313–318.
    [66] M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, and H. W. Schock, “Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells, vol. 41–42, pp. 335–343, Jun. 1996.
    [67] B. M. Keyes, F. Hasoon, P. Dippo, A. Balcioglu, and F. Abulfotuh, “Influence of Na on the electro-optical properties of Cu(In,Ga)Se2,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997, pp. 479–482.
    [68] U. Rau et al., “Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In, Ga)Se2 solar cells,” Solid State Commun., vol. 107, no. 2, pp. 59–63, May 1998.
    [69] R. Takei, H. Tanino, S. Chichibu, and H. Nakanishi, “Depth profiles of spatially‐resolved Raman spectra of a CuInSe2‐based thin‐film solar cell,” J. Appl. Phys., vol. 79, no. 5, p. 2793, Jun. 1998.
    [70] T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and Structural Characterization of Cu(In,Ga)Se2/MoS Interface in Cu(In,Ga)Se2 Solar Cells,” Jpn. J. Appl. Phys., vol. 35, no. Part 2, No. 10A, pp. L1253–L1256, Oct. 1996.
    [71] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, “Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure,” Sol. Energy Mater. Sol. Cells, vol. 67, no. 1–4, pp. 209–215, Mar. 2001.
    [72] K. Kushiya et al., “The role of Cu(InGa)(SeS)2 surface layer on a graded band-gap Cu(InGa)Se2 thin-film solar cell prepared by two-stage method,” in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996, 1996, pp. 989–992.
    [73] T. M. Friedlmeier, D. Braunger, D. Hariskos, M. Kaiser, H. N. Wanka, and H. W. Schock, “Nucleation and growth of the CdS buffer layer on Cu(In,Ga)Se2 thin films,” in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996, 1996, pp. 845–848.
    [74] Y. Hashimoto, N. Kohara, T. Negami, N. Nishitani, and T. Wada, “Chemical bath deposition of Cds buffer layer for GIGS solar cells,” Sol. Energy Mater. Sol. Cells, vol. 50, no. 1–4, pp. 71–77, Jan. 1998.
    [75] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, “High‐efficiency CuIn x Ga1− xSe 2 solar cells made from (Inx ,Ga1− x )2 Se3 precursor films,” Appl. Phys. Lett., vol. 65, no. 2, pp. 198–200, Jul. 1994.
    [76] W. E. Devaney, W. S. Chen, J. M. Stewart, and R. A. Mickelsen, “Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe2 solar cells,” IEEE Trans. Electron Devices, vol. 37, no. 2, pp. 428–433, 1990.
    [77] R. W. Birkmire et al., “Processing and Modeling Issues for Thin-Film Solar Cell Devices; Annual Subcontract Report, 16 January 1995 - 15 January 1996,” 1996.
    [78] N. Barreau, J. Lähnemann, F. Couzinié-Devy, L. Assmann, P. Bertoncini, and J. Kessler, “Impact of Cu-rich growth on the CuIn1−xGaxSe2 surface morphology and related solar cells behaviour,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 11, pp. 2013–2019, Nov. 2009.
    [79] T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Growth of CuInSe2 crystals in Cu-rich Cu–In–Se thin films,” J. Mater. Res., vol. 12, no. 06, pp. 1456–1462, Jun. 1997.
    [80] J. R. Tuttle et al., “Structure, chemistry, and growth mechanisms of photovoltaic quality thin‐film Cu(In,Ga)Se2 grown from a mixed‐phase precursor,” J. Appl. Phys., vol. 77, no. 1, pp. 153–161, Jan. 1995.
    [81] S. Nishiwaki, N. Kohara, T. Negami, H. Miyake, and T. Wada, “Microstructure of Cu(In,Ga)Se2 Films Deposited in Low Se Vapor Pressure,” Jpn. J. Appl. Phys., vol. 38, no. Part 1, No. 5A, pp. 2888–2892, May 1999.
    [82] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, “High‐efficiency CuInxGa1− xSe 2 solar cells made from (Inx ,Ga 1− x )2 Se3 precursor films,” Appl. Phys. Lett., vol. 65, no. 2, pp. 198–200, Jul. 1994.
    [83] D. Y. Lee, J. H. Yun, K. H. Yoon, and B. T. Ahn, “Characterization of Cu-poor surface on Cu-rich CuInSe2 film prepared by evaporating binary selenide compounds and its effect on solar efficiency,” Thin Solid Films, vol. 410, no. 1–2, pp. 171–176, May 2002.
    [84] S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films, vol. 323, no. 1–2, pp. 265–269, Jun. 1998.
    [85] D. J. Chakrabarti and D. E. Laughlin, “The Cu−Se (Copper-Selenium) system,” Bull. Alloy Phase Diagrams, vol. 2, no. 3, pp. 305–315, Dec. 1981.
    [86] T. Nishimura, S. Toki, H. Sugiura, K. Nakada, and A. Yamada, “Interfacial quality improvement of Cu(In,Ga)Se2 thin film solar cells by Cu-depletion layer formation,” Appl. Phys. Express, vol. 9, no. 9, p. 092301, 2016.
    [87] Binary Vapor-Liquid Equilibrium Data. Chemical Engineering Research Information Center.
    [88] “JEOL Introduces New Versatile FE-SEM Series for Sub-Nanometer Imaging and Analysis of Nanostructures and Magnetic Samples.” [Online]. Available: https://www.nanowerk.com/news/newsid=24931.php. [Accessed: 08-Jul-2018].
    [89] “Solar Spectral Irradiance: Air Mass 1.5.” [Online]. Available: http://rredc.nrel.gov/solar/spectra/am1.5/. [Accessed: 12-Mar-2018].
    [90] “Solar Cells: A Guide to Theory and Measurement – Ossila.” [Online]. Available: https://www.ossila.com/pages/solar-cells-theory. [Accessed: 06-Jul-2018].
    [91] C. Frisk, “Modeling and electrical characterization of Cu(In,Ga)Se2 and Cu2ZnSnS4 solar cells,” 2017.
    [92] “Quantum Efficiency.” [Online]. Available: http://pvcdrom.pveducation.org/CELLOPER/QUANTUM.HTM. [Accessed: 07-Jul-2018].
    [93] A. Niemegeers and M. Burgelman, “Numerical modelling of AC-characteristics of CdTe and CIS solar cells,” in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996, 1996, pp. 901–904.
    [94] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, vol. 361–362, pp. 527–532, Feb. 2000.
    [95] K. Decock, S. Khelifi, and M. Burgelman, “Modelling multivalent defects in thin film solar cells ” Thin Solid Films, vol. 519, pp. 7481–7484, 2011.
    [96] K. Decock, P. Zabierowski, and M. Burgelman, “Modeling metastabilities in chalcopyrite-based thin film solar cells,” J. Appl. Phys., vol. 111, no. 4, p. 043703, Feb. 2012.
    [97] G. Li et al., “The influence of cracked selenium flux on CIGS thin film growth and device performance prepared by two-step selenization processes,” Sol. Energy Mater. Sol. Cells, vol. 139, no. 139, pp. 108–114, Aug. 2015.
    [98] M. A. Contreras, I. Repins, W. K. Metzger, M. Romero, and D. Abou-Ras, “Se activity and its effect on Cu(In,Ga)Se2 photovoltaic thin films,” Phys. status solidi, vol. 206, no. 5, pp. 1042–1048, May 2009.
    [99] T. Nishimura, S. Toki, H. Sugiura, K. Nakada, and A. Yamada, “Interfacial quality improvement of Cu(In,Ga)Se2 thin film solar cells by Cu-depletion layer formation,” Appl. Phys. Express, vol. 9, no. 9, p. 092301, 2016.
    [100] Y. Hashimoto, N. Kohara, T. Negami, N. Nishitani, and T. Wada, “Chemical bath deposition of Cds buffer layer for GIGS solar cells,” Sol. Energy Mater. Sol. Cells, vol. 50, no. 1–4, pp. 71–77, 1998.
    [101] N. Rega et al., “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films, vol. 480–481, no. August 2017, pp. 286–290, 2005.
    [102] I. Dirnstorfer, M. Wagner, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of CuIn(Ga)Se2 Thin Films,” Phys. Status Solidi, vol. 168, no. 1, pp. 163–175, 1998.
    [103] B. M. Keyes, P. Dippo, J. Abushama, and R. Noufi, “Cu(In,Ga)Se2 Thin-Film Evolution During Growth — A Photoluminescence Study Preprint,” no. May, 2002.
    [104] S. B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B, vol. 57, no. 16, pp. 9642–9656, Apr. 1998.
    [105] R. Márquez and C. Rincón, “Defect physics of ternary chalcopyrite semiconductors,” Mater. Lett., vol. 40, no. 2, pp. 66–70, Jul. 1999.
    [106] M. Igalson and P. Zabierowski, “Electron traps in Cu(InGa)Se2 absorbers of thin film solar cells studied by junction capacitance techniques,” Optoelectron. Rev. 4, vol. 11, no. 4, pp. 261–268, 2003.
    [107] M. M. Islam et al., “Effect of Se/(Ga+In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell,” J. Cryst. Growth, vol. 311, no. 7, pp. 2212–2214, 2009.
    [108] B. Ohnesorge, R. Weigand, G. Bacher, A. Forchel, W. Riedl, and F. H. Karg, “Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells,” Appl. Phys. Lett., vol. 73, no. 9, p. 1224, Oct. 1998.
    [109] W. K. Metzger et al., “Time-resolved photoluminescence studies of CdTe solar cells,” J. Appl. Phys., vol. 94, no. 5, pp. 3549–3555, Sep. 2003.
    [110] C.-S. Lee, S. Kim, E. A. Al-Ammar, H. Kwon, and B. T. Ahn, “Effects of Zn Diffusion from (Zn,Mg)O Buffer to CIGS Film on the Performance of Cd-Free Cu(In,Ga)Se2 Solar Cells,” ECS J. Solid State Sci. Technol., vol. 3, no. 6, pp. Q99–Q103, Apr. 2014.
    [111] S. Shimakawa, Y. Hashimoto, S. Hayashi, T. Satoh, and T. Negami, “Annealing effects on Zn1−xMgxO/CIGS interfaces characterized by ultraviolet light excited time-resolved photoluminescence,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 9, pp. 1086–1090, Sep. 2008.
    [112] S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. status solidi, vol. 6, no. 5, pp. 1059–1062, May 2009.
    [113] S. Shirakata and T. Nakada, “Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Thin Solid Films, vol. 515, no. 15, pp. 6151–6154, May 2007.
    [114] S. Shirakata, “Photoluminescence characterization of Cu(In,Ga)Se2 solar-cell processes,” Phys. Status Solidi Basic Res., vol. 252, no. 6, pp. 1211–1218, 2015.

    無法下載圖示 全文公開日期 2023/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE