簡易檢索 / 詳目顯示

研究生: 黃彥翔
Yen-hsiang Huang
論文名稱: 氮化鎵表面粗糙化技術研發與相關太陽能電池特性之探討
Development of GaN surface roughening techniques and investigation of the related solar-cell characteristics
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 趙良君
Liang -Chiun Chao
蘇忠傑
Jung-Chieh Su
洪儒生
Lu-Sheng Hong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 氮化鎵太陽能電池壓電極化表面粗糙化
外文關鍵詞: piezoelectric polarization and surface roughenin
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研發氮化鎵表面粗糙化技術並嘗試應用於提升氮化鎵太陽能電池光電流。由於商用氮化鎵晶圓是為做LED元件設計,主動層多重量子井數目較少。為了避免QCSE (quantum-confined Stark effect)效應,其主動層量子井厚度約只有20-30 A。過薄的主動層厚度將使得太陽能電池吸收效率不佳,因此希望透過散射體的應用,增加主動區的光程長度,以提升光吸收率與光電流密度。
首先透過濕式蝕刻方式嘗試將晶片表面產生適當地散射體尺寸。根據FRED模擬,理想的氮化鎵太陽能電池散射體尺寸為0.15+/-0.05 μm,但濕式蝕刻所產生的散射體寬度約0.26-0.65 μm,深度為0.06 μm,面積覆蓋率約1.5%左右,預期無法有效的將光散射。若使用乾蝕刻方式,以二氧化矽次微米球當遮罩,並透過ICP-RIE(inductively-coupled plasma reactive ion etching)乾蝕刻的方式將氮化鎵表面粗糙化,產生散射體寬度約0.10-0.22 μm,深度約0.03-0.05μm,其覆蓋率可達到70%以上。
我們將乾蝕刻的散射體應用至氮化鎵太陽能電池上,並比較有無散射體之光電流密度。在元件量測上,觀察到許多元件受到壓電極化影響使短路電流密度下降,其幅度大過散射體可增加的比例。另外,氮化鎵表面蝕刻增加了蕭特基接觸與表面缺陷密度/表面復合中心,導致量子效率下降,以及透明導電層已有相當粗糙的表面,造成光電流密度未達到預期增加。


In this work, GaN surface roughening techniques were developed and used in solar cells to increase the photo-current density. Commercial GaN LED wafers we used to fabricate GaN solar cells have fewer numbers of quantum well we need. Moreover, to avoid QCSE (quantum-confined Stark effect), the thickness of each quantum well is only about 20-30 Ǻ resulting in a very thin active layer and hence low light absorption when operated as solar cells. Therefore we added a scattering layer by using surface roughening to increase the optical length of the incident light in the active layer and expect to increase light absorption and the photocurrent density.
First, we tried wet etching on GaN wafer to generate light scatters. According to our simulation using FRED software, the ideal size of spherical scatters for GaN-based solar cells is about 0.15+/-0.05 μm. But the width and depth of the scatters produced by wet etching were about 0.26-0.65 μm and 0.06 μm, respectively. Additionally, the area coverage of scatters was only about 1.5% that cannot facilitate light scattering efficiently. Secondly, dry etching method was conducted as follows, SiO2 sub-micron spheres were used as mask, followed by ICP-RIE (inductively-coupled plasma reactive ion etching) dry etching to produce textured GaN surface. The width and depth of the scatters were about 0.10-0.22 μm and 0.03-0.05μm, respectively. The area coverage of scatters reached more than 70%.
The dry etching produced scatters were applied to GaN solar cells. We observed that quite many devices were affected by piezoelectric polarization effect, which resulted in significant decrease in short circuit current density. The ratio of decreasing short circuit current density caused by polarization could be larger than the gain of increasing short circuit current density caused by scattering. In addition, the roughening of GaN surface also increased Schottky contact and the surface defects/surface recombination center, which lead to low quantum efficiency. Besides the transparent conducting layer has quite rough surface originally. In results, the photo current density was not increased as expected.

中文摘要 I Abstract III 致謝 V 目錄 VI 圖片目錄 IX 表格目錄 XIII 第1章 導論 1 1.1 太陽能電池現況介紹 1 1.2 氮化鎵太陽能電池介紹 3 1.3 研究動機與目的 12 第2章 太陽能電池原理 14 2.1 太陽光譜 14 2.2 太陽能電池結構 15 2.3 太陽能電池原理 16 2.4 太陽能電池等效電路 19 2.5 太陽能電池效率參數 23 第3章 氮化鎵濕式蝕刻、乾式蝕刻與表面粗糙化原理 26 3.1 氮化鎵濕式蝕刻 28 3.2 氮化鎵乾式蝕刻與表面粗糙化 31 第4章 儀器使用與製程方法 37 4.1 儀器與材料使用 37 4.1.1 實驗材料 37 4.1.2 儀器介紹 38 4.1.3 氮化鎵太陽能電池製程方法 45 第5章 結果與討論 53 5.1 利用濕蝕刻方法對晶圓表面產生粗糙化 53 5.1.1 磷酸於溫度170℃與190℃蝕刻P-InGaN之探討 53 5.1.2 190℃磷酸硫酸混和溶液蝕刻 58 5.1.3 濕式蝕刻方式對P-InGaN 蝕刻之結論 64 5.2 利用乾蝕刻方式於晶圓表面產生粗糙化 66 5.2.1 不同三氯化硼/氯氣比例通入ICP-RIE蝕刻比較 68 5.2.2 不同四氟化碳/氧氣比例通入ICP-RIE蝕刻比較 70 5.2.3 乾式蝕刻對氮化鎵產生表面粗糙化結論 74 5.3 元件結果與討論 76 5.3.1 太陽能電池光罩面積與實際元件表面結構化尺寸 76 5.3.2 氮化鎵元件IV曲線分析 79 第6章 結論與未來展望 91 參考文獻 94

[1]National Renewable Energy Laboratory, “Best Research-cell efficiencies,” website: http://www.nrel.gov/ncpv/
[2]L. Hsu, R. E. Jones, S. X. Li, K. M. Yu, and W. Walukiewicz, “Electron mobility in InN and III-N alloys,” J. Appl. Phys., Vol. 102, 073705 (2007)
[3]G. Bhuiyan, K. Sugita, K. Kasashima, and A. Hashimoto,” Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy,” Appl. Phys. Lett., Vol. 83, 4788 (2002)
[4]O. Jani, C. Honsberg, A. Asghar, D.Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, “Characterization and analysis of InGaN photovoltaic devices,” Present at the 31st IEEE Photovoltaic Specialists Conference, Jan 3-7 (2005)
[5]P. Mottier, LEDs for Lighting Applications, ISTE and John Wiley & Sons, London, p.33 (2009)
[6]H. C. Chen, C. C. Lin, H. W. Wang, M. A. Tsai, P. C. Tseng, Y. L. Tsai, H. W. Han, Z. Y. Li, Y. A. Chang, H. C. Kuo, P.Yu, and S. H. Lin, “Efficiency Enhancement in Single-Junction InGaP Solar Cells by Using Self-Assembled Nanospheres,” IEEE Photonics Technology Letters, Vol.23 (2011)
[7]E. Fred Schubert, “Light-emitting diode”, Cambridge University Press, New York (2006)
[8]Z. Q. Li, M. Lestradet, Y. G. Xiao, and S, Li, “Effects of polarization charges on the photovoltaic properties of InGaN solor cells,” Phys. Status Solid A 208, No. 4, 928-931 (2011)
[9]C. C. Yang, J. K. Sheu, Xin-Wei Liang, Min-Shun Huang, M. L. Lee et al, “ Enhancement of the conversion efficiency of GaN –based photovoltaic devices with AlGaN/InGaN absorption layers,” Appl. Phys. Letters, Vol. 97, 021113 (2010)
[10]J. J. Wierer, Jr., A. J. Fischer, and D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices,” Appl. Phys. Letters, Vol. 96, 051107 (2010)
[11]Carl J. Neufeld, Samantha C. Cruz, Robert M. Farrell, Michael Iza, Jordan R. Lang, Stacia Keller, Shuji Nakamura, Steven P. DenBaars, James S. Speck, and Umesh K. Mishra, ”Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Letters, Vol. 98, 243507 (2011)
[12]Chia-Yen Huang, Matthew T. Hardy, Kenji Fujito, Daniel F. Feezell, James S. Speck,Steven P. DenBaars, and Shuji Nakamura, “Demonstration of 505nm laser diodes using wavelength-stable semipolar (2021) InGaN/GaN quantum wells,” Appl. Phys. Letters, Vol. 99, 24115 (2011)
[13]Cheng-Han Ho, Kun-Yu Lai, Chin-An Lin, Guan-Jhong Lin, Meng-Kai Hsing, and Jr-Hau He, “ Microdome InGaN-based multiple quantum well solar cells,” Appl. Phys. Letters, Vol. 101, 023902 (2011)
[14]P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “ Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Letters, Vol. 100, 013105 (2011)
[15]J. J. Wierer, D. D. Koleske, and S. R. Lee, “Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Letters, Vol. 100, 11119 (2012)
[16]Chih-Ciao Yang, C. H. Jang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Feng-Wen Huang, Yu-Hsiang Yeh, and Wei-Chih Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Optical express A695, Vol. 19, No. S4
[17]H. W. Wang, H. C. Chen, Y. A. Chang, C. C. Lin, H. W. Han, M. A. Tsai, H. C. Kuo, P. Yu, and S. H. Lin, “Conversion Efficiency Enhancement of GaN/In0.11Ga0.89 N Solar Cells With Nano Patterned Sapphire and Biomimetic Surface Antireflection Process,” IEEE Photonics Technology Letters, Vol. 23, No. 18 (2011)
[18] Carl J. Neufeld, Samantha C. Cruz, Robert M. Farrell, Michael Iza, Stacia Keller, Shuji Nakamura, Steven P. DenBaars, James S. Speck, and Umesh K. Mishra, “Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells,” Appl. Phys. Letters, Vol. 99, 071104 (2011)
[19]Elison Matiol, Carl Neufeld, Michael Iza, Samantha C. Cruz, Ali A. Al-Heji, Xu Chen, Robert M. Farrell, Stacia Keller, Steven DenBaars, Umesh Mishra, Shuji Nakamura, James Speck, and Claude Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Letters, Vol. 98, 021102 (2011)
[20]Xinhe Zheng, Longjuan Tang, Dongyan Zhang, Jianrong Dong, and Hui Yang, “ Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solid A 208, No. 1, 199-201 (2011)
[21] R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang,” InGaN/GaN multiple quantum well concentrator solar cells,” Appl. Phys. Letters, Vol. 97, 073115 (2010)
[22] Jae-Phil Shim, Seong-Ran Jeon, Yon-Kil Jeong, and Dong-Seon Lee, “Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEEE Electron Device Letters, Vol. 31, NO. 10 (2010)
[23] Newport Corporation, http://www.newport.com/
[24] S. L. Qi, Z. Z. Chen, H. Fang, Y. J. Sun, L. W. Sang, X. L. Yang, L. B. Zhao, P. F. Tian, J. J. Deng, Y. B. Tao, T. J. Yu, Z. X. Qin, and G. Y. Zhang, “Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4,” Appl. Phys. Letters, Vol. 95, 071114 (2009)
[25]Avinash P. Nayak, Logeeswaran, VJ and M. Saif Islam, “Wetetching and dry etching, “ University of California, Davis. California
[26]羅正忠, 張鼎張, “半導體技術導論”, 學銘圖書(2010)
[27]D. A Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN”, Appl. Phys. Letters, Vol. 73, 2654(1998)
[28]Hsing-Ying Lee, Xiang-Yan Huang, and Ching-Ting Lee, ”Light output enhancement of GaN-based roughened LEDs using bias-assisted photoelectrochemical etching method,” Journal of The Electrochemical Society, 155 (10) H707-H709 (2008)
[29]C. Youtsey, G. Bulman, and I. Adesida, “Dopant Selective Photoenhanced Wet Etching Of GaN,” Journal of Electronic Materials, Vol. 27, No. 4, 1998
[30]Lei Zhang, Yongliang Shao, Yongzhong Wu, Xiaopeng Hao, Xiufang Chen, Shuang Qu, and Xiangang Xu, “Characterization of dislocation etch pits in HVPE-grown GaN using different wet chemical etching methods,” Journal of Alloys and Compounds, Vol. 504 186-191 (2010)
[31] Min-Yung Ke, Cheng-Yin Wang, Liang-Yi Chen, Hung-Hsien Chen, Hung-Li Chiang, Yun-Wei Cheng, Min-Yann Hsieh, Cheng-Pin Chen, and JianJang Huang, “Application of Nanosphere Lithography to LED Surface Texturing and to the Fabrication of Nanorod LED Arrays,” IEEE Journal Of Selected Topics In Quantum Electronics, Vol. 15, No. 4, July/August 2009
[32]Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Parka, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” Journal Of Applied Physics, Vol. 93, No. 11 2003
[33]黃文峰, “ZnTPP之Langmuir-Blodgett薄膜製備及其光電效應之研究” 國立台灣科技大學化學工程學系碩士學位論文 (2006)
[34]Ahk company, http://www.ahk-service.de/main/coating-technologies
[35]Shengjun Zhou, Bin Cao, Sheng Liu, “Dry etching characteristics of GaN using Cl2/BCl3 inductively coupled plasmas,” Applied Surface Science, 257 905–910 (2010)
[36]C. J. Mogab, A. C. Adams, and D. L. Flamm, “Plasma etching of Si and Si02- The effect of oxygen additions to CF4 plasmas,” Appl. Phys. Letters, Vol. 49, 3796 (1978)
[37]甯榮椿,使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究,國立清華大學材料科學與工程學系碩士學位論文 (2010)
[38]林智仁, 場發式掃描式電子顯微鏡簡介, 工業材料雜誌, 181期 (2002)
[39]Jae-Phil Shim, Seong-Ran Jeon, Yon-Kil Jeong, and Dong-Seon Lee, “ Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEEE Electron Device Letters, Vol. 31, No. 10, October 2010
[40] 陳景煌,氮化鎵發光二極體串聯電阻最低化的元件電路模型與製程改進, 國立台灣科技大學光電工程所碩士學位論文, 2012
[41]Shigefusa F. Chichibu, Akira Uedono, Takeyosui Onuma, Benjamin A. Haskell, Arpan Chakraborty, Takahiro Koyama, Paul T. Fini, Stacia Keller, Steven P. Denbaars, James S. Speck, Umesh K. Mishra, Shuji Nakamura, Shigeo Yamaguchi, Satoshi Kamiyama, Hirohsi Amano, Isamu Akasaki, Jung Han and Takayuki Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Natural materials, Vol. 5, October 2006
[42]M.M. El-Nahass ,E.M. El-Menyawy, “Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates”, Materials Science and Engineering, B177, 145–150 (2012)

QR CODE