簡易檢索 / 詳目顯示

研究生: 張宜馨
Yi-Hsin Chang
論文名稱: 基於雙層次擬題引導策略之翻轉學習模式對學生學習成效之影響
Effects of a Two-Stage Problem Posing-based Flipped Learning Strategy on Students’ Learning Performance in a Science Course
指導教授: 黃國禎
Gwo-Jen Hwang
口試委員: 朱蕙君
Hui-Chun Chu
邱國力
Guo-Li Chiou
楊凱翔
Kai-Hsiang Yang
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 翻轉學習批判思考能力擬題策略自我效能科學學習方法
外文關鍵詞: flipped learning, critical thinking, problem-posing, self-efficacy efficacy, approaches to learning science
相關次數: 點閱:513下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,翻轉教室模式逐漸受到重視,其強調學生可以在課前透過教師錄製的講授影片記憶與理解知識,並在課中活動中進行學習活動。基於翻轉教室的背景,Bergmann與Sams認為,一個好的翻轉學習模式應有效地運用課堂時間,進行同儕與師生互動,以及高層次思考活動。也有研究指出,若缺乏學習策略的引導,學生在課前的學習及課堂活動中的表現往往不如預期,更不易有高層次的思考的表現。為了解決這個問題,本研究提出結合雙層次擬題引導策略之翻轉學習模式,引導學生在課前透過選項方式瞭解擬題的概念並在課中演練擬題活動。為瞭解此教學模式之成效,本研究建立一個翻轉學習系統,並將這個模式應用於國小自然科學習活動中。參與實驗的對象為國小五年級的兩個班級,共56名學生;其中一個班為實驗組,一個班為控制組。實驗組學生使用雙層次擬題引導策略之翻轉學習模式,控制組學生使用一般翻轉學習模式。本研究結果證實,結合雙層次擬題引導策略的翻轉學習活動,比傳統翻轉教室的教學方法,在學生的自然科學習成效、自我效能及深層科學學習方法上具有顯著差異,而未來建議可進行更長時間之研究,分析學生之批判思考能力是否具有顯著差異。


Flipped learning teaching has gradually received great attention in recent years. It not only switches the time of in-class lecture and out-of-class learning, but increases the efficiency within a limited in-class time so that students’ higher thinking ability and the interaction among teachers and peers could be enhanced. However, studies also pointed that if students learn without learning strategies, it would be difficult to stimulate students’ higher order thinking in learning from the context and activities. Therefore, this study proposed a two-stage problem posing-based flipped learning approach, which consists of the option-guidance stage in out-of-class learning to foster students’ concept of problem posing, and the practicing stage to guide students to pose problems in the class. To investigate the performance of the proposed method, a flipped learning system was developed and a quasi-experimental design was adopted by assigning two class of students to an experimental group and a control group. The former learned with the two-stage problem posing-based flipped learning approach, while the latter learned with the conventional flipped classroom approach. The experimental results of the study confirmed that the two-stage problem posing-based flipped learning approach could enhance students’ learning performance and higher order thinking, such as self-efficacy, and deeper approaches to learning science. It is suggested that the students’ deeper thinking abilities, such as critical thinking, can be explore in future long-term research.

第一章 緒論 1.1 研究背景與動機 1.2 研究目的與問題 1.3 名詞釋義 1.3.1 翻轉教室(Flipped Classroom)與翻轉學習(Flipped Learning) 1.3.2 擬題學習策略(Problem-posing) 1.3.3 批判思考能力(Critical Thinking) 1.3.4 自我效能(Self-Efficacy) 1.3.5 科學學習方法(Approaches to Learning Science) 1.3.6 結合雙層次擬題引導策略之翻轉學習模式(Two-Stage Problem Posing-based Flipped Learning Strategy) 第二章 文獻探討 2.1 翻轉教室(Flipped Classroom)與翻轉學習(Flipped Learning) 2.1.1 翻轉教室與翻轉學習之起源 2.1.2 翻轉學習的教育意義 2.1.3 翻轉學習之相關研究 2.2 擬題學習策略(Problem Posing) 2.2.1 擬題學習策略之定義與意涵 2.2.2 擬題學習策略之教育應用 第三章 結合雙層次擬題引導策略之翻轉學習系統 3.1 系統架構 3.2 課前引導式擬題介面與功能介紹 3.3 課中合作式擬題學習介面與功能介紹 第四章 研究設計 4.1 研究架構 4.2 研究對象 4.3 研究課程 4.4 研究工具 4.4.1 自然科學習成就測驗 4.4.2 批判思考能力量表 4.4.3 自我效能量表 4.4.4 科學學習方法量表 4.4.5 訪談題目 4.4.6 資料處理與分析 4.5 實驗流程 第五章 研究結果與分析 5.1 學習成就 5.2 批判思考能力 5.3 自我效能能力 5.4 科學學習方法能力 5.4.1 淺層科學學習方法分析結果 5.4.2 深層科學學習方法分析結果 5.4.3 科學學習方法各別面向之分析結果 5.5 擬題策略對學生擬題深度之影響 第六章 結論與未來展望 6.1 研究結果與討論 6.1.1 學習成效方面 6.1.2 批判思考能力方面 6.1.3 自我效能能力方面 6.1.4 科學學習方法方面 6.1.5 學生擬題分析 6.2 研究建議 6.2.1 教學者方面 6.2.2 學生方面 6.3 未來展望 參考文獻 附錄

Abramovich, S., & Cho, E. K. (2006). Technology as a medium for elementary preteachers’ problem-posing experience in mathematics. Journal of Computers in Mathematics and Science Teaching, 25(4), 309-323.
Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's Taxonomy of Educational Objectives. Anderson LW and Krathwohl DR. New York: Addison Wesley Longmann.
Al‐Zahrani, A. M. (2015). From passive to active: The impact of the flipped classroom through social learning platforms on higher education students' creative thinking. British Journal of Educational Technology.
Arikan, E. E., & Ünal, H. (2015). An Investigation of Eighth Grade Students' Problem Posing Skills (Turkey Sample). Online Submission, 1(1), 23-30.
Arum, R., & Roksa, J. (2011). Academically adrift: Limited learning on college campuses. University of Chicago Press.
Bandura, A. (2000). Exercise of human agency through collective efficacy. Current directions in psychological science, 9(3), 75-78.
Bergmann, J., & Sams, A. (2012a). Flip your classroom: Reach every student in every class every day. International Society for Technology in Education.
Bergmann, J., & Sams, A. (2012b). Before you flip, consider this: leaders of the flipped classroom movement say each teacher will have a different experience, but securing school leadership support, time, and IT resources will be important to every effort. Phi Delta Kappan, 94(2), 25.
Bergmann, J., & Sams, A. (2014). Flipped learning: Gateway to student engagement. International Society for Technology in Education.
Birenbaum, M. (1996). Assessment 2000: Towards a pluralistic approach to assessment. In Alternatives in assessment of achievements, learning processes and prior knowledge (pp. 3-29). Springer Netherlands.
Bonwell, C.; Eison, J. (1991). Active Learning: Creating Excitement in the Classroom AEHE-ERIC Higher Education Report No. 1. Washington, D.C.: Jossey-Bass.
Brown, S. I., & Walter, M. I. (2014). Problem posing: Reflections and applications. Psychology Press.
Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 1-10.
Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786.
Chao, C. Y., Chen, Y. T., & Chuang, K. Y. (2015). Exploring students' learning attitude and achievement in flipped learning supported computer aided design curriculum: A study in high school engineering education. Computer Applications in Engineering Education.
Chen, Y., Wang, Y., & Chen, N. S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead?. Computers & Education, 79, 16-27.
Çıldır, S., & Sezen, N. (2011). A study on the evaluation of problem posing skills in terms of academic success. Procedia-Social and Behavioral Sciences, 15, 2494-2499.
Dillon, J. T. (1982). Problem Finding and Solving*. The journal of creative behavior, 16(2), 97-111.
Felder, R. M., & Brent, R. (2003). Learning by doing. Chemical engineering education, 37(4), 282-309.
Fisher, A. (2011). Critical thinking: An introduction. Cambridge University Press.
Francl, T. J. (2014). Is Flipped Learning Appropriate. Journal of Research in Innovative Teaching, 71, 119-128.
Huang, Y. M., Kuo, Y. H., Lin, Y. T., & Cheng, S. C. (2008). Toward interactive mobile synchronous learning environment with context-awareness service. Computers & Education, 51(3), 1205-1226.
Hung, H. T. (2015). Flipping the classroom for English language learners to foster active learning. Computer Assisted Language Learning, 28(1), 81-96.
Hwang, G. J., Shi, Y. R., & Chu, H. C. (2011). A concept map approach to developing collaborative Mindtools for context‐aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778-789.
Hwang, G. J., Lai, C. L., & Wang, S. Y. (2015). Seamless flipped learning: a mobile technology-enhanced flipped classroom with effective learning strategies. Journal of Computers in Education, 2(4), 449-473.
Hwang, G. J., Yang, T. C., Tsai, C. C., & Yang, Stephen J. H. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53(2), 402-413.
Işık, C., Kar, T., Yalçın, T., & Zehir, K. (2011). Prospective teachers’ skills in problem posing with regard to different problem posing models. Procedia-Social and Behavioral Sciences, 15, 485-489.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development.
Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into practice, 41(4), 212-218.
Lai, C. L., & Hwang, G. J. (2016). A self-regulated flipped classroom approach to improving students’ learning performance in a mathematics course. Computers & Education, 100, 126-140.
Lee, M. H., Johanson, R. E., & Tsai, C. C. (2008). Exploring Taiwanese high school students' conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191-220.
Leung, S. S. (1993). Mathematical problem posing: The influence of task formats, mathematics knowledge, and creative thinking. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F. Lin (Eds.). Proceedings of the 17th International conference of the International Group for the psychology of Mathematics Education, vol. III , pp. 33-40. Tsukuba, Japan: Author.
Lin, K. M., & Leng, L. W. (2008). Using problem-posing as an assessment tool. In 10th Asia-Pacific Conference on Giftedness, Singapore.
Mason, J. (2000). Asking mathematical questions mathematically. International Journal of Mathematical Education in Science and Technology, 31(1), 97-111.
Meluso, Angela, Zheng, Meixun, Spires, Hiller A., & Lester, James. (2012). Enhancing 5th graders’ science content knowledge and self-efficacy through game-based learning. Computers & Education, 59(2), 497-504.
Pintrich, P.R., Smith, D.A.F., Garcia, T., & McKeachie, W.J. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). MI: National Center for Research to Improve Postsecondary Teaching and Learning. (ERIC Document Reproduction Service No. ED 338122)
Polya, G. (1945). How to solve it (2nd ed.). New York: Doubleday.
Sahin A., Cavlazoglu, B., & Zeytuncu, Y. E. (2015). Flipping a College Calculus Course: A Case Study. Educational Technology & Society, 18 (3), 142–152.
Saitta, E., Morrison, B., Waldrop, J. B., & Bowdon, M. A. (2015). Introduction: Joining the Flipped Classroom Conversation. In Waldrop, J. B., & Bowdon, M. A. (Eds.), Best Practices for Flipping the College Classroom (pp. 1-16). New York, NY: Routledge.
Schultz, D., Duffield, S., Rasmussen, S. C., & Wageman, J. (2014). Effects of the flipped classroom model on student performance for advanced placement high school chemistry students. Journal of chemical education, 91(9), 1334-1339.
Seaman, J., & Tinti-Kane, H. (2013). Social media for teaching and learning. Pearson Learning Systems.
Silver, E. A., & Cai, J. (2005). Assessing students’ Mathematical Problem Posing. Teaching Children Mathematics, 12(3), 129-135.
Skinner, P. (1991). What's your problem: Posing and solving mathematical problems, K-2. Portsmouth, NH: Heinemann.
Stone, B. B. (2012). Flip your classroom to increase active learning and student engagement. In Proceedings from 28th Annual Conference on Distance Teaching & Learning, Madison, Wisconsin, USA.
Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing in school mathematics. Technology in mathematics education, 518-525.
Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task orientation. Learning Environments Research,15(2), 171-193.
Sun, J. C. Y., Wu, Y. T., & Lee, W. I. (2016). The effect of the flipped classroom approach to OpenCourseWare instruction on students’ self‐regulation. British Journal of Educational Technology.
Trilling, B., & Fadel, C. (2009). 21st century skills: Learning for life in our times. John Wiley & Sons.
Tsai, C. W., Shen, P. D., Chiang, Y. C., & Lin, C. H. (2016). How to solve students’ problems in a flipped classroom: a quasi-experimental approach. Universal Access in the Information Society, 1-9.
Tucker, B. (2012). The flipped classroom. Education Next, 12(1), 82-83.
Warter-Perez, N., & Dong, J. (2012). Flipping the classroom: How to embed inquiry and design projects into a digital engineering lecture. InProceedings of the 2012 ASEE PSW Section Conference.
Whitin, P. (2004). Promoting problem-posing explorations. Teaching Children Mathematics, 11(4), 180-186.
Yu, F. Y. (2011). Multiple peer-assessment modes to augment online student question-generation processes. Computers & Education, 56(2), 484-494.
Yu, F. Y. & Chen, Y. J. (2014). Effects of student-generated questions as the source of online drill-and-practice activities on learning. British Journal of Educational Technology, 45, 2, 316–329
Yu, F. Y. & Liu, Y. H. (2005). Potential values of incorporating multiple-choice question-construction for physics experimentation instruction. International Journal of Science Education, 27(11), 1319–1335.
Yu, F.-Y. & Pan, K.-J. (2014). The Effects of Student Question-Generation with Online Prompts on Learning. Educational Technology & Society, 17 (3), 267–279.
Yu, F. Y., Wu, C. P., & Hung, C. C. (2014). Are There Any Joint Effects of Online Student Question Generation and Cooperative Learning? The Asia-Pacific Education Researcher, 23(3), 367-378.

無法下載圖示 全文公開日期 2021/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE