簡易檢索 / 詳目顯示

研究生: 王土權
Tu-Chuan Wang
論文名稱: 以幾何干涉檢測及田口實驗方法進行滑蓋彈簧尺寸參數之優化
Optimal Design of Dimension Parameters of Slide-hinge Spring Using Geometry Interference Checking and Taguchi Experimental Method
指導教授: 林清安
Ching-An Lin
口試委員: 修芳仲
Fang-Jung Shiou
楊宏智
Hong T. Young
陳亮嘉
Liang-Chia Chen
周明
Min Jou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 131
中文關鍵詞: CAD、計算幾何能量法干涉檢查田口實驗方法多重目標演算法有限元素分析滑蓋彈簧
外文關鍵詞: Energy method, Slide-hinge spring
相關次數: 點閱:406下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

滑蓋機構是滑動式手機及滑動式平板電腦的關鍵零組件,此機構的運動主要是靠一個或數個特殊形狀的扭轉彈簧來提供動力源,而手機及平板電腦“輕、薄、短、小”的要求造成扭轉彈簧在微小線徑的幾何條件下,需達到“大行程、大推力及高壽命”的嚴苛設計要求,因此造成扭轉彈簧的設計異常困難。為解決此問題,本論文乃構思如何將傳統應用於降低實驗次數的“田口實驗方法”應用至扭轉彈簧的尺寸參數設計,並結合工程力學的基本觀念及計算幾何的數學基礎來確保彈簧幾何形狀的合理性。首先,本論文以“能量法”的觀念推導出扭轉彈簧在滑蓋機構中推移一段固定行程的運動方程式,由此方程式求出無運動干涉的扭簧尺寸參數;接著,以此扭簧尺寸整理出合理的參數組合,做為田口法的控制因子及變動水準,然後以有限元素法計算出直交表中每一組扭簧尺寸在整個運動行程中的最大應力,以利求出“最大應力最小化”的參數組合,藉以解決先前所提的“高壽命”設計要求。但誠如先前所言,扭轉彈簧的設計需“同時”達到“大行程、大推力及高壽命”的嚴苛設計要求,因此本論文再嘗試將模糊理論導入田口法,發展出“多重目標演算法”,以解決“最大應力最小化”與“固定作用力”雙目標函數之最佳化設計問題,藉此得到扭轉彈簧之最佳化尺寸參數。
本論文除了理論推導外,並開發電腦程式及使用商用CAE軟體,使整個數學推導過程及所提出的演算法皆能連貫,快速得到最佳的扭轉彈簧尺寸參數。由最終的計算結果所得的扭轉彈簧可驗證本論文所提出的“運動幾何計算+田口實驗方法+多重目標演算”可達到“大行程、大推力及高壽命”的嚴苛設計要求。


The slide mechanism is a key component of sliding mobile phones and sliding tablet PCs. The movement of the slide mechanism mainly relies on one or more specially-shaped torsion springs as the power source. Compact size and light weight are major design trends for mobile phones and tablet PCs, and necessitate the stringent design requirements of “large traveling distance, high elastic force, and long service life” for torsion springs of small diameter, rendering their design exceptionally difficult. To solve this problem, this study proposes an application of the Taguchi method (which is conventionally used to reduce the number of experiments in material testing) to the design of dimension parameters for torsion springs. The geometry of the spring is ensured by taking into account basic concepts of engineering mechanics and mathematical foundations of computational geometry. First, based on the concept of “energy method”, this study developed motion equations for a torsion spring traveling a fixed distance, as in the slide mechanism. The equations were then used to obtain dimension parameters for a spring with no self-interference. Reasonable parameter combinations obtained were in turn used as control factors and change levels for the subsequent Taguchi method. Finally, the finite element method was applied to determine the maximum stress within the entire movement of each spring dimensional group in the orthogonal array, and parameter combinations were obtained that minimized this maximum stress to best meet the design requirement of long service life.
As previously mentioned, the torsion spring design must satisfy the stringent requirements of “large traveling distance, high elastic force, and long service life”. Hence, this study attempted to incorporate fuzzy set theory into the Taguchi method and develop a multiple performance characteristics index that could solve the optimization problem of dual-target functions of minimized maximum stress and fixed acting force, yielding the optimal torsion spring dimensions.
In addition to discussing its theoretical foundations, this study also developed computer programs and used commercial CAE software to achieve consistency throughout the entire mathematical deduction process and the proposed algorithms, resulting in rapid calculations of optimal torsion spring dimensions. The final torsion spring dimensions can be used to verify that the proposed method - which combines motion geometry, the Taguchi method, and a multiple performance characteristics index - can satisfy the challenges of “large traveling distance, high elastic force, and long service life”.

摘要 I Abstract III 誌謝 V 目錄 VI 符號索引 X 圖目錄 XII 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 2 1.3 論文架構 4 第二章 文獻探討 6 2.1 有限元素法 6 2.2 田口法 8 2.2.1因子與水準 8 2.2.2直交表 9 2.2.3 S/N比 9 2.2.4 變異數分析 11 2.3 模糊田口法 11 2.4 滑蓋機構 12 第三章 滑蓋彈簧結構之理論分析 14 3.1定義滑蓋彈簧的自由體圖 15 3.2 定義各段的彎矩 16 3.2.1定義第一段的直線彎矩公式 16 3.2.2定義第二段的圓弧彎矩公式 17 3.2.3定義第三段的直線彎矩公式 18 3.2.4定義第四段的圓弧彎矩公式 19 3.2.5定義第五段的直線彎矩公式 19 3.2.6定義第六段的圓弧彎矩公式 20 3.2.7定義第七段的直線彎矩公式 21 3.3 卡氏定理解析 22 3.4 求出各端點的撓度 23 3.5 干涉檢查 24 3.5.1 有線徑的直線點座標 25 3.5.2 有線徑的圓弧點座標 26 3.5.3 直線兩段三點表示式 28 3.5.4 圓弧兩段三點之表示式 28 3.5.5 建立干涉檢查之聯立方程式 29 3.6 定義完全不干涉的組合 32 3.6.1 設定第一個控制因子的不干涉範圍 32 3.6.2設定第二個控制因子的不干涉範圍 33 3.6.3設定第三個控制因子的不干涉範圍 34 3.6.4設定其它控制因子的不干涉範圍 35 第四章 滑蓋彈簧應力分析 42 4-1 建構3D模型 43 4-2 設定分析元素 44 4-3 設定材料性質 45 4-4 設定連接條件 45 4-5 產生網格 45 4-6 模擬與分析 49 4.7滑蓋彈簧實體量測 50 4.7.1量測系統簡介 51 4.7.2實體量測結果 51 第五章 最佳化參數設計 54 5-1 設定控制因子 56 5-2定義不干涉的控制因子水準 56 5.3 選用田口法L18直交表 57 5-4 採用田口法望小特性 58 5-5 採用設定田口法望目特性 61 5-6 使用模糊田口法求多重目標特性 64 5-6-1模糊田口法之應力輸入函數 66 5-6-2模糊田口法之作用力輸入函數 68 5-6-3 模糊田口法之輸出函數 70 5-6-4模糊田口法之模糊推論 73 5-6-5模糊田口法之反模糊化 76 5-6-6模糊田口法 79 第六章 結論及未來展望 82 6.1 結論 82 6.2 未來展望 83 參考文獻 85 附錄 89 作者簡介 115

1. 馬愛軍、王旭,Patran和Nastran有限元素分析,清華大學出版社,北京,2005。
2. S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, 3rd Edition, Pearson Prentice Hall, New York, 2007.
3. M. J. Turner, R. W. Clough, H. C. Martin, and L. C. Topp, "Stiffness and Deflection Analysis of Complex Structures," J. Aeronent Sci., Vol. 23, No. 9, 1956.
4. 王國強,實用工程數值模擬技術在ANASYS上的實踐,西北工業大學出版社,西安,2000。
5. J. F. Besseling, "The Complete Analogy Between the Matrix Equations and the Continuous Field Equations of Structural Analysis," International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liege, Belgium, pp. 223-242, 1964.
6. R. J. Melosh, "Basis for the Derivation of Matrics for the Direct Stiffness Method," AIAA Journal, Vol. 1, No. 7, pp. 1631-1637, 1963.
7. R. E. Jones, "A Generalization of the Direct Stiffness Method of Structural Analysis," AIAA Journal, Vol. 2, No. 5, pp. 821-826, 1964.
8. J. R. Cooke and D. C. Davis, Applied Finite Element Analysis – An Apple II Implementation, John Wiley & Sons, Inc., New York, 1986.
9. S. Moita and M. Soares, "Analyses of magneto-electro-elastic plates using a higher order finite element model," Journal of the Composite Structures, Vol. 91, pp. 421-426, 2009.
10. K. Alnefaie, "Finite element modeling of composite plates with internal delamination," Journal of the Composite Structures, Vol. 90, pp. 21-27, 2009.
11. R. D. Cook, Finite Element Modeling for Stress Analysis, John Wiley & Sons, Inc., New York, 1995.
12. Y.-L. Hsu, Y.-C. Hsu, and M.-S. Hsu, "Shape Optimal Design of Contact Springs of Electronic Connectors," Transactions of the ASEM, Vol. 124, pp. 178-183, 2002.
13. 鄭崇義,田口品質工程技術理論與實務,中華民國品質學會,台北,2000。
14. G. Taguchi, Introduction to Quality Engineering. , Asian Productivity Organization , Tokio, Japan:, 1990.
15. 田口玄一,田口統計解析法,五南圖書出版公司,台北市,2003。
16. 鄭燕琴,田口品質工程技術理論與實務,中華民國品質學會,台北,1998。
17. 羅錦興,田口品質工程指引,中國生產力中心,台北,1999。
18. A. Kunjur and S. Krishnamurty, "A Robust Multi-Criteria Optimization Approach," Mech.Mach.Theory, Vol. 32, pp. 797-810, 1997.
19. G. Derringer and R. Suich, "Simultaneous Optimization of Several Response Variables," Journal of Quality Technology, Vol. 12, pp. 214-219, 1980.
20. E. A. Elsayed and A. Chen, "Optimal Levels of Process Parmeters for Products with Multiple Characteristics," International Journal of Production Research, Vol. 31, pp. 1117-1132, 1993.
21. A. I. Khuri and M. Conlon, "Simultaneous Optimization of Multiple Response Represented by Polynomial Regression nctions," Technometrics, Vol. 23, pp. 363-375, 1981.
22. L.-I. Tong, C.-T. Su, and C.-H. Wang, "The Optimization of Multi- Response Problems in the Taguchi Method," International Journal of Quality& Reliability Management, Vol. 14, pp. 367-380, 1997.
23. Y. S. Tarng, W. H. Yang, and S. C. Juang, "The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process," International Journal of Advanced ManufacturingTechnology, Vol. 16, pp. 688-694, 2000.
24. J. Y. Kao and Y. D. Pan, "Optimization of Tool Geometryin Face Milling Operation Using the Fuzzy-Based Taguchi Method," Journal of Technology, Vol. 16, pp. 709-716, 2001.
25. L.-I. Tong and C.-T. Su, "Optimization Multi-response Problems in the Taguchi Methodby Fuzzy Multiple Attribute Decision Making," Quality and Reliability Engineering International, Vol. 13, pp. 25-34, 1997.
26. 鐘煥章和陳玉銘,滑蓋機構及應用該滑蓋機構之攜帶式電子裝置,中華民國專利I318669,蘇泰克貿易有限公司,英屬維爾京群島,2006。
27. 林明璋,「滑蓋手機之機構研究」,碩士論文,逢甲大學材料與製造工程研究所,台中,2007。
28. 陳盈璋,「滑蓋彈簧應力分析與尺寸參數設計」,碩士論文,國立臺灣科技大學機械工程研究所,台北,2007。
29. 蔡意輝,「滑蓋彈簧之壽命分析」,碩士論文,國立臺灣科技大學機械工程研究所,台北,2008。
30. 馬揚傑,「扭力彈簧之電腦輔助應力分析」,碩士論文,國立臺灣科技大學機械工程研究所,台北,2009。
31. 張敬民,「應用基因演算法於滑蓋手機彈簧結構最佳化設計」,碩士論文,國立高雄第一科技大學機械與自動化所,高雄, 2009。
32. 柯定成,「大型滑蓋之結構分析與尺寸參數設計」,碩士論文,國立臺灣科技大學機械工程研究所,台北,2010。
33. 陳信志,「可變動力行程半自動滑蓋之參數化設計」,碩士論文,國立臺灣科技大學機械工程研究所,台北,2010。
34. D. L. Logan, Mechanics of Materials, Harpercollins College Div, New York, 1991.

QR CODE