簡易檢索 / 詳目顯示

研究生: 王祥賓
Shung-ping Wang
論文名稱: 燃料電池金屬雙極板微流道成形與效能之有限元素分析
Finite Element Analysis on Forming and Efficiency of Micro-Channels of Metallic Bipolar Plate for Fuel Cell
指導教授: 黃佑民
You-min Huang
口試委員: 向四海
Sz-hai Hsiang
徐瑞坤
Ruei-kuen Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 橡膠墊輔助成形微流道有限元素最佳化
外文關鍵詞: Rubber pad forming, micro-channel, Finite element, Optimization
相關次數: 點閱:198下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於目前燃料電池中重要元件之雙極板,並無適合進行量產之加工方式,故其整體成本始終居高不下。本研究利用橡膠墊輔助成形之方法,進行金屬板微流道結構之製作,並探討各製程參數對於成形性之影響,以利量產可能性之探討。本研究之實驗使用厚度為0.1mm之SUS316L薄板,透過聚氨酯墊,進行金屬雙極板微流道之壓印成形。本研究先利用有限元素模擬軟體ANSYS CFX進行流道幾何外型對於燃料電池效能之模擬分析,探討流道深度、寬度與肋條寬度等參數對於速度與壓力之影響。接續則利用有限元素模擬軟體Abaqus/ Standard,建立2-D平面與3-D模型,對其進行以填充率為目標函數之最佳化分析,觀察在成形容許範圍內,流道幾何參數與負載之變化趨勢,於2-D結果顯示,在小幅度改變下,負載提升、加大內外圓弧角以及減少脫模角,皆有利於提升成形性,且對於不同之成形性判斷依據,其影響顯著之程度先後順序則略有不同。而在3-D模擬中,可知流道轉彎處板材與全板材之厚度變化,並以實驗破裂厚度來判斷成形極限,並將實驗結果與數值模擬比對,以達到數值模擬分析之可信性。最後本文亦在橡膠墊輔助成形條件下,設計出最佳效能之流道。


    Bipolar plate is an important component of the fuel cell. Because there is no suitable fabrication process for mass-production of bipolar plate, the cost of portable fuel cell is still too high now a days. In this study, the rubber pad forming process was used to fabricate the micro-channels on metallic bipolar plate and the effect on process parameters of the rubber pad forming were analyzed. Polyurethane rubbers were used for the rubber pads, and SUS316L stainless steel sheets with a thickness of 0.1mm were tested in the experiment. Firstly, finite element analysis (FE, Ansys CFX software) was used to analyze the efficiency of fuel cell by geometric factor of channels numerically, in order to figure out the influence of velocity and pressure on channel depth, channel width, rib width. Secondly, finite element analysis (FE, Abaqus / Standard software) was also used to analyze the rubber pad forming process numerically. Finally, the experimental and numerical results showed a good agreement in this study. Furthermore, an optimization design of micro-channels for fuel cell was developed under rubber pad forming process.

    摘要 I ABSTRACT II 誌謝 II 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.1.1 燃料電池簡介 2 1.1.2 橡膠墊輔助成形技術 6 1.2 研究動機與目的 9 1.3 文獻回顧 10 1.4 論文構成 14 第二章 材料性質與試驗 15 2.1 不鏽鋼板材拉伸試驗 15 2.1.1 拉伸試驗設備 15 2.1.2 拉伸試片製作 15 2.1.3 拉伸試驗步驟 16 2.1.4 拉伸實驗之結果 16 2.2 橡膠材料試驗 20 2.2.1 超彈性材料力學模型 20 2.3 結言 22 第三章 有限元素分析 23 3.1 有限元素法簡介 23 3.2 有限元素分析系統 25 3.3 軟體介紹 28 3.3.1 ANSYS(CFX) 28 3.3.2 Abaqus 30 3.4 基本假設 31 3.5 ANSYS CFX流道幾何模型建立 32 3.5.1 邊界條件 36 3.5.2 流道設計 36 3.5.3 統御方程式 37 3.6 模擬結果比較 38 3.7 Abaqus成形模型建立 46 3.7.1 模具、板件外形與邊界條件設定 46 3.7.2材料性質設定 49 3.8 後處理 50 3.9 結言 50 第四章 數值分析與實驗方法 51 4.1 實驗機台與模具介紹 51 4.1.1 油壓壓床機台 51 4.1.2 上模仁與橡膠墊 55 4.1.3 量測儀器 57 4.2 實驗與初步2-D有限元素模擬之驗證 59 4.2.1 最佳化分析 61 4.3 實驗與3-D有限元素模擬驗證 67 4.3.1 部份3-D流道模擬 67 4.3.2 3-D全流道模擬與實驗 69 4.3.3 流道深度實驗量測與模擬 73 4.4 實驗與模擬負荷沖程 77 4.5 實驗與模擬厚度變化 78 4.6 簡易燃料電池組裝與測試 82 4.7 結言 86 第五章 結論與未來工作 87 5.1 結論 87 5.2 未來研究方向之建議 89 參考文獻 91 附錄A 模具系統之設計工程圖 95 -作者簡介 97

    1. H. Tawfik, Y. Hung and D. Mahajan,“Metal bipolar plates for PEM fuel cell-A review”Journal of Power Sources , vol. 163, pp. 755-767 (2007).
    2. T.E. Lipman, J.L. Edwards and D.M Kammen,“Fuel cell system economics:comparing the costs of generating power with stationary and moter vehicle PEM fuel cell systems”, Energy Policy, vol. 32, pp. 101-125 (2004).
    3. I. Bar-On and R. Roth,“Technical cost analysis for PEM fuel cells”, Journal of Power Sources, vol. 109, pp.71-75 (2002).
    4. P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects”, Journal of Power Sources, vol. 102, pp. 235-269 (2001).
    5. 左峻德,“燃料電池之特性與運用:兼論台灣燃料電池產業之發展”,國家實驗研究院科學資料中心,2001。
    6. http://www.bac2.co.uk/image/FuelCellConstruction.jpg, Last access date:May 16 (2013).
    7. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,2003。
    8. X. Li and I. Sabir, “Review of bipolar plates in PEM fuel cells:Flow-field design”, International Journal of Hydrogen Energy, vol. 30, pp. 359-371 (2005).
    9. A. Hermann, T. Chaudhuri and P. Spagnol, “Bipolar plates for PEM fuel cells:A review”, International Journal of Hydrogen Energy, vol. 30, pp. 1297-1302 (2005).
    10. M. Koc and S. Mahabunphachai, “Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates:Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding”, Journal of Power Sources, vol. 172, pp. 725-733 (2007).
    11. E. Middelman, W. Kout, B. Vogelaar, J. Lenssen and E. De Waal, “Bipolar plates for PEM fuel cells:A review”, Journal of Power Sources, vol. 30, pp. 44-46 (2003).
    12. M.H. Oh, Y.S. Yoon and S.G. Park, “The electrical and physical properties of alternative material bipolar plate for PEM fuel cell system”, Electrochim. Acta, vol. 50, pp. 777-780 (2004).
    13. E.A. Cho, U.S. Jeon, H.Y. Ha, S.A. Hong and I.H. Oh, “Characteristics of composite bipolar plates for polymer. electrolyte membrane fuel cells”, Journal of Power Sources, vol. 125, pp. 178-182 (2004).
    14. 黃鎮江,“燃料電池”,第三版,滄海書局,2008。
    15. X. Li, “PEM fuel cells. Lecture notes”, University of Waterloo, August 20 (2002).
    16. S. Maharudrayya, S. Jayanti, and A.P. Deshpande, “Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks”, Journal of Power Sources, Vol. 157, pp. 358-367 (2006).
    17. C.A. Reiser, and R.D. Sawyer, “Solid polymer electrolyte fuel cell stack water management system”, U.S. Pat., No. 4, 197-198 (1980).
    18. A. Pollegri and P.M. Spaziante, U.S. Pat., No.5, 108,849 (1992).
    19. F.R. Spurrier, B.E. Pierce and M.K. Wrighe, U.S. Pat., No.4, 631,239 (1986).
    20. A. Kazim, H.T. Liu, and P. Forge, “Modelling of performance of PEM fuel cells with conventional and interdigitated flow field”, Journal of Applied Electrochemistry, Vol. 29, pp. 1409-1416 (1999).
    21. T.V. Nguyen, “A gas distributor design for proton exchange membrane fuel cells”, Journal of the Electrochemical Society, Vol. 143, pp. 103-105 (1996).
    22. J. S. Yi, and T. V. Nguyen, “Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors”, Journal of The Eletrochemical Society, Vol. 146, pp. 38-45 (1999).
    23. S. Dutta, S. Shimpalee, and J.W. Van Zee, “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 2029-2042 (2001).
    24. 涂正輝,質子交換膜燃料電池之三維流道設計與熱質傳分析,國立成功大學機械工程系碩士論文,2003。
    25. E. Hontanon, M.J. Escudero, C. Bautista, P.L. Garcia-Ybarra, and L. Daza, “Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics technique”, Journal of Power Sources, Vol. 86, pp. 363-368 (2000).
    26. J.D. Browne and E. Battikha, “Optimisation of aluminium sheet forming using a flexible die”, Journal of Materials Processing Technology, vol. 55, pp. 218-223 (1995).
    27. M. Ramezani, Z.R. Mohd and R. Ahmad, “Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation”, CIRP Journal of Manufacturing Science and Technology, vol. 3, pp. 16-203 (2010).
    28. Y. Liu and L. Hua, “Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming”, Journal of Power Sources, vol.195, pp. 3529-3535 (2010).
    29. 潘品帆,橡膠墊輔助金屬板材微流道成形之有限元素分析,國立交通大學機械工程學系碩士論文,2012。
    30. S. Mahabunphacha, O. Necati Cora and M. Koc, “Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates”, Journal of Power Sources, vol.195, pp. 5269–5277(2010).
    31. 愛發股份有限公司,“Abaqus實務入門引導”,初版,全華,2005。
    32. S. Mahabunphachai and M. Koc, “Fabrication of micro-channel arrays on thin metallic sheet using internal fluid pressure:Investigations on size effects and development of design guidelines”, Journal of Power Sources, vol.175, pp. 363-371(2008).

    QR CODE