簡易檢索 / 詳目顯示

研究生: 王吟微
Yin - Wei Wang
論文名稱: 以生物模擬實驗執行科學實務對七年級學生之學習影響
Effects of Science Practices on Biology Learning Using Simulation
指導教授: 陳素芬
Sufen Chen
口試委員: 劉為開
none
陳秀玲
none
梁至中
none
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 科學實務探究模擬實驗自我效能
外文關鍵詞: science practices, inquiring, simulated experiment, self-efficacy.
相關次數: 點閱:457下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物課程常會受時空的限制無法進行實驗,學生因而少了探究和實作的機會,但模擬實驗能解決此問題。此外,美國NRC K-12教育框架提出,學生在科學學習上,須將知識概念結合8個實作能力來執行科學實務。故本研究欲瞭解七年級學生以生物模擬實驗來執行科學實務對學習之影響。研究分為兩個階段,對象皆為大台北地區七年級學生,兩人一組使用iPad或電腦進行生物科學實務。在研究一,學生進行遺傳課程活動,本研究依學生的學習成就設計客製化學習單,學習單以開放性問題進行引導,這些問題可以幫助學生分別使用到8個科學實務來完成實驗。此外,學生尚須完成學習成就測驗以及科學實務自我效能前後測,並於實驗後填寫學習感受問卷。而在研究二,學生則進行遺傳、演化、生態三次主題活動,所有學生都使用相同的學習單執行實務。我們對學生施以科學實務自我效能前中後測,並於實驗結束後,針對學生的學習影響進行訪談。研究結果發現,在經過生物科學實務活動之後,學生的學習成就顯著提升,學生也普遍於訪談中表示學習到生物知識內容和科學實作能力,且以統計分析能力為最多學生提及。大部分的學生認為在實驗中有好的成果及得到成就感,但在科學實務自我效能方面,前後測表現並無顯著差異。此外,科學實務自我效能可以預測學生的自然段考成績,其解釋力達.19。我們還發現,以中學習成就學生對此課程的喜愛程度最高,而對實驗感到無趣的以高學習成就學生居多。學生普遍認為與「組員溝通討論」是執行科學實務過程中容易遇到的問題。因此我們認為,若要增進學生的科學實務能力和其自我效能,需要長時間且密集的培養,且可以在活動中加入後設認知工具幫助學生執行科學實務。另外,在國中階段的學生,重視同儕間的互動與合作,我們建議教師除了教導學生課程知識和實作技能外,也需幫助學生可以互相合作,共同完成科學實務。


    Simulated experiments can help solve the many of the issues of cost and materials of actual experiments, allowing all students the opportunity of practice in biology class. The NRC K-12 science framework has indicated that students need to incorporate content knowledge into science practices in science learning. This research looked into the influence of biology simulated experiments on 7th grade students’ learning in Taipei. Students worked in pairs with an iPad or a computer to perform biological science practices. This study was divided into two sub-studies. First, 19 students conducted a genetics experiment by applying the 8 science practices through customized worksheets with guiding open ended questions. Pre- and post-conceptual tests were given to the students. Second, another group of 24 students involving in genetic, evolution, and ecology activities used worksheets to conduct the practices. Student’s science practices self-efficacy, and satisfaction with their learning were measured. This study found that simulated experiments not only promoted students’ academic achievement but also enhanced their analytical ability. Most students felt a high level of achievement. On the other hand, scientific self-efficacy showed no effect. However, it could predict students’ science midterm exam (R2= .19). Students of average achievement enjoyed the course, while high achievement students felt bored. Students stated group collaboration was the biggest obstacle in the course. To promote student self-efficacy and achievement, this study suggests long term and intensive support through metacognitive tools. As students were having problems with collaboration, this study also suggests teachers not only instruct students in content materials, but also teach students to collaborate in groups to accomplish tasks.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究之重要性 3 第三節 研究問題 4 第四節 研究假設 4 第五節 研究限制 4 第六節 相關名詞定義 4 第二章 文獻探討 6 第一節 科學探究 6 第二節 科學實務(science practice) 9 第三節 模擬實驗 12 第四節 自我效能 15 第三章 研究方法 18 第一節 研究一 18 第二節 研究二 24 第四章 研究結果與分析 32 第一節 研究一 32 第二節 研究二 35 第五章 結論與建議 45 第一節 討論 45 第二節 結論與建議 48 參考文獻 50 一、中文部分 50 二、英文部分 51 附錄一 56 附錄二 61 附錄三 63 附錄四 67

    一、中文部分
    李婉芬、林志明、唐文華 (2007)。以 3D 電腦動畫模擬輔助國小學童磁場概念之學習.。物理教育學刊,8(1),17-31。
    林勇吉 (2015)。國小學童參與科學營對科學與數學自我效能、學習動機與學習焦慮之研究。自然科學與教育,1(1),47-56。
    林建隆、徐順益、侯佳典 (2009)。以 5E 探究式學習環設計國二浮力單元教材對概念改變成效之研究。物理教育學刊,10(1),27-40。
    教育部 (2008)。國民中小學九年一貫課程綱要。臺北市:教育部。
    張麗雲 (2008)。資優班學生科學探究活動之分析。特殊教育與復健學報,18,51-71。
    張玉山、楊雅茹 (2014)。STEM 教學設計之探討: 以液壓手臂單元為例。科技與人力教育季刊, 1(1),2-17。
    曾永祥、許瑛玿 (2006)。線上課程對高二學生四季成因概念學習的影響。科學教育期刊,14(3),257-282。
    楊桂瓊、陳雅君、洪瑞兒、林煥祥 (2015)。新興科技融入探究式教學的成效探討。科學教育學刊,23(2),111-127。

    二、英文部分
    Achieve. (2013). Next Generation Science Standards. Retrieved from http://www.nextgenscience.org/next-generation-science-standards
    Anastopoulou, S., Sharples, M., Ainsworth, S., Crook, C., O'Malley, C., & Wright, M. (2012). Creating personal meaning through technology-supported science inquiry learning across formal and informal settings. International Journal of Science Education, 34(2), 251-273.
    Atkin, J. M. & Karplus, R. (1962). Discovery of invention? Science Teacher 29(5), 45.
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191.
    Bandura, A. (1997). Self-efficacy: The Exercise of Control. Macmillan.
    Bell, R. L., & Smetana, L. K. (2008). Using computer simulations to enhance science teaching and learning. National Science Teachers Association, 3, 23-32.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: BSCS, 5, 88-98.
    Bybee, R. W. (2011). Scientific and engineering practices in K–12 classrooms. Science Teacher, 78, 34-40.
    Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.
    Chachashvili-Bolotin, S., Milner-Bolotin, M., & Lissitsa, S. (2016). Examination of factors predicting secondary students’ interest in tertiary STEM education. International Journal of Science Education, 38(3), 366-390.
    Carraher, J. M., Curry, S. M., & Tessonnier, J. P. (2016). Kinetics, reaction orders, rate laws, and their relation to mechanisms: A hands-on introduction for high school students using portable spectrophotometry. Journal of Chemical Education.
    Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation‐based and microcomputer‐based laboratories. Science Education, 98(5), 905-935.
    Chen, S., Liu, Y., Chou, T.-L., Chi, C., Chien, K.-P., & Yang, L.-L. (2015). Measurement of the science practices self-efficacy for secondary school students. Paper presented at the 2015 International Conference of the East-Asian Association for Science Education, Beijing, China, Oct. 16th-18th, 2015.
    Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). Alignment of hands-on stem engagement activities with positive stem dispositions in secondary school students. Journal of Science Education and Technology, 24(6), 898-909.
    Cuevas, P., Lee, O., Hart, J., & Deaktor, R. (2005). Improving science inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching, 42(3), 337-357.
    Dogan, U. (2015). Student engagement, academic self-efficacy, and academic motivation as predictors of academic performance. Anthropologist, 20(3), 553-561.
    Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692-699.
    Fakayode, S. O., Pollard, D. A., Snipes, V. T., & Atkinson, A. (2014). Offering a geoscience professional development program to promote science education and provide hands-on experiences for K–12 science educators. Journal of Chemical Education, 91(11), 1882-1886.
    Ferla, J., Valcke, M., & Cai, Y. (2009). Academic self-efficacy and academic self-concept: Reconsidering structural relationships. Learning and Individual Differences, 19(4), 499-505.
    Huang, C. (2013). Gender differences in academic self-efficacy: a meta-analysis. European Journal of Psychology of Education, 28(1), 1-35.
    Kıran, D., & Sungur, S. (2012). Middle school students’ science self-efficacy and its sources: Examination of gender difference. Journal of Science Education and Technology, 21(5), 619-630.
    Loh, B., Reiser, B. J., Radinsky, J., Edelson, D. C., Gomez, L. M., & Marshall, S. (2001). Developing reflective inquiry practices: A case study of software, the teacher, and students. Designing for science: Implications from everyday, classroom, and professional settings, 279-323.
    Loucks-Horsley, S., & Olson, S. (Eds.). (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
    MacPhee, D., Farro, S., & Canetto, S. S. (2013). Academic self‐efficacy and performance of underrepresented STEM majors: Gender, ethnic, and social class patterns. Analyses of Social Issues and Public Policy, 13(1), 347-369.
    Manz, E. (2015). Resistance and the Development of Scientific Practice: Designing the Mangle Into Science Instruction. Cognition and Instruction, 33(2), 89-124.
    Meluso, A., Zheng, M., Spires, H. A., & Lester, J. (2012). Enhancing 5th graders’ science content knowledge and self-efficacy through game-based learning. Computers & Education, 59(2), 497-504.
    Michaels, S., A. Shouse, and H. Schweingruber. (2008). Ready, set, science!: Putting research to work in K–8 science classrooms. Washington, DC: National Academies Press.
    Mody, C. (2015). Scientific practice and science education. Science Education,99(6), 1026-1032.
    National Research Council (U.S.). (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Board on science education division of behavioral and social sciences and education. Washington, DC: National Academies Press.
    Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309-327.
    Ritz, J. M., & Fan, S. C. (2015). STEM and technology education: International state-of-the-art. International Journal of Technology and Design Education, 25(4), 429-451.
    Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.
    Schwab, J. J. (1960). What do scientists do?. Behavioral Science, 5(1), 1-27.
    Schweingruber, H. A., Michaels, S., & Shouse, A. W. (2007). Ready, set, science!: Putting research to work in K-8 science classrooms. National Academies Press.
    Stubbs, K. N., Yanco, H. A., Sathianarayanan, M., Chauhan, M., Saha, S. K., Kumar, S., & Krovi, V. (2009). STREAM: A workshop on the use of robotics in K-12 STEM education. Robotics & Automation Magazine, IEEE, 16(4), 17-19.
    Srisawasdi, N., & Panjaburee, P. (2015). Exploring effectiveness of simulation-based inquiry learning in science with integration of formative assessment. Journal of Computers in Education, 2(3), 323-352.
    Taub, R., Armoni, M., Bagno, E., & Ben-Ari, M. M. (2015). The effect of computer science on physics learning in a computational science environment. Computers & Education, 87, 10-23.
    Tsihouridis, C., Vavougios, D., Ioannidis, G. S., Alexias, A., Argyropoulos, C., & Poulios, S. (2015, September). The effect of teaching electric circuits switching from real to virtual lab or vice versa—A case study with junior high-school learners. In Interactive Collaborative Learning (ICL), 2015 International Conference on (pp. 643-649). IEEE.
    van der Meij, H., van der Meij, J., & Harmsen, R. (2015). Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment. Educational Technology Research and Development, 63(3), 381-403.
    Wang, J., Guo, D., & Jou, M. (2015). A study on the effects of model-based inquiry pedagogy on students’ inquiry skills in a virtual physics lab. Computers in Human Behavior, 49, 658-669.
    Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967.
    Winkelmann, K., Baloga, M., Marcinkowski, T., Giannoulis, C., Anquandah, G., & Cohen, P. (2014). Improving students’ inquiry skills and self-efficacy through research-inspired modules in the general chemistry laboratory. Journal of Chemical Education, 92(2), 247-255.
    Winters, F. I., & Azevedo, R. (2005). High-school students' regulation of learning during computer-based science inquiry. Journal of Educational Computing Research, 33(2), 189-217.
    Yang, W. T., Lin, Y. R., She, H. C., & Huang, K. Y. (2015). The effects of prior-knowledge and online learning approaches on students’ inquiry and argumentation abilities. International Journal of Science Education, 37(10), 1564-1589.
    Zhang, W. X., Hsu, Y. S., Wang, C. Y., & Ho, Y. T. (2015). Exploring the impacts of cognitive and metacognitive prompting on students’ scientific inquiry practices within an e-learning environment. International Journal of Science Education, 37(3), 529-553.
    Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27, 172-223.

    QR CODE