簡易檢索 / 詳目顯示

研究生: 黃品康
Pin-Kang Huang
論文名稱: 指叉狀金微電極運用於生物感測器
Biosensors based on Interdigital Array Microelectrodes
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 王孟菊
Meng-Jiy Wang
Suryadi Ismadji
Suryadi Ismadji
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 101
中文關鍵詞: 指叉狀微電極微影製程葡萄糖感測器甲殼素溶膠凝膠
外文關鍵詞: chitosan, glucose biosensor, interdigital array microelectrodes, photolithography technique, sol gel.
相關次數: 點閱:241下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

糖尿病為一種全球常見的疾病,病徵包含胰島素缺乏與高血糖。糖尿病主要影響身體內器官引起長期損害與功能障礙的現象,並伴隨著許多併發症,如同:心臟病、腎衰竭與失明等。目前最為廣泛發展的電化學葡萄糖生物感測器,能有效即時監控血糖的濃度變化,並協助醫師進行糖尿病的治療。
本研究中使用新型的溶膠凝膠法(sol gel)將酵素固定於指叉狀微電極表面,並藉由四極式電極測量法量測葡萄糖含量。此種新型材料主要是藉由甲殼素、水與TEOS於醋酸觸媒進行水解與縮合反應。此種有機混摻無機溶膠凝膠(organic-inorganic)能有效的提供良好的生物相容性與穩定酵素的環境。指叉狀電極是利用微影製程與濺鍍技術所製備,其表面型態與電極特性則使用掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)與電子能譜化學分析儀(ESCA)鑑定。
研究結果指出該指叉式葡萄糖生物感測器具有良好的訊號反應、合適的線性量測範圍(1 mM ~ 11 mM)與最低偵測極限(1 μM)。電化學測量反應中亦顯示該感測器具有快速的應答時間(5 s)、高靈敏度(1.41 μA/mM)以及較小的動力常數Km (2.94 mM).。此外,研究中亦討論了溶液中酸鹼值、施加電位、電子傳遞物濃度與酵素最佳化於電極之影響。


Diabetes mellitus is a worldwide disease which is caused by insulin deficiency and hyperglycemia. The effects of diabetes mellitus include long term damage, dysfunction and failure of various organs. Those complications include higher risks of heart disease, kidney failure, blindness, etc. Electrochemical glucose biosensor is the most widely developed one because of its importance in monitoring of blood glucose for diabetes treatment.
A new type of chitosan-sol gel marix was fabricated for glucose biosensor in a four-electrode cell based on interdigited array (IDA) microelectrodes. This material consisted of fixed chitosan and various H2O and Si(OC2H5)4 (TEOS) was obtained from the hydrolysis and condensation reactions catalyzed by acetic acid. It provided a good biocompatibility and stabilizing microenvironment for enzyme. IDA microelectrode was fabricated by the conventional photolithography technique. The surface morphology and performance of bare IDA microelectrodes was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and electron spectroscopy for chemical analysis (ESCA).
The biosensor exhibited good response for glucose with wide linear range (1 mM to 11 mM) and low detection limit (1 μM). This four-electrode cell also showed short response time (≤ 5 s), high sensitivity (1.41 μA/mM), and small Michaelis–Menten constant (2.94 mM). In additional, the effects of pH, applied potential, mediator concentration, and enzyme loading on the amperometric response of the sensor were investigated.

摘要 I Abstract II Table of contents IV Lists of tables VIII Lists of figures IX Chap 1 Introduction 1 Chap 2 Background study 4 2-1 Introduction of sensor 4 2-1-1 Biosensors 6 2-2 Development of biosensor 7 2-2-1 First generation of glucose biosensor 7 2-2-2 Second generation of glucose biosensor 9 2-2-3 Third generation glucose biosensor 10 2-3 Enzyme immobilization 11 2-3-1 Adsorption 11 2-3-2 Entrapment 12 2-3-3 Cross-linking 12 2-3-4 Mixing 12 2-3-5 Electrodeposition 13 2-4 Mediator 14 2-5 Electrode fabrication technology 16 2-5-1 Thick film technology 16 2-5-2 Thin film technology 17 2-6 IDA electrode 18 2-6-1 Miniaturization technology 18 2-6-2 Scheme of IDA electrode 19 2-6-3 Redox cycling 20 2-6-4 Collection efficiency on IDA electrodes 22 2-7 Enzymatic catalysis of oxidation of glucose 23 Chap 3 Experimental 26 3-1 Materials and instruments 26 3-1-1 Materials 26 3-1-2 Experimental gas 26 3-1-3 Apparatus 26 3-1-4 Chemicals and reagents 27 3-2 Solution preparation 28 3-2-1 Phosphate buffered saline preparation 28 3-2-2 Glucose solution 28 3-2-3 Chit-sol gel-GOx solution 28 3-4 IDA electrode fabrication: 29 3-4-1 Equipment of thin film process 32 3-5 Experimental setup and measurements 32 3-5-1 Cyclic voltammetry and chronoamperometry 33 Chap 4 Results and discussion 34 4-1 Characterization of IDA electrodes 34 4-1-1 SEM 34 4-1-2 AFM 34 4-1-3 ESCA 37 4-1-4 XRD 37 4-2 Dual mode cyclic voltammetry 39 4-2-1 Redox cyclicing of IDA 39 4-2-2 Amplification factor 40 4-2-3 Stability of IDA microelectrodes 40 4-3 Characteristic of chit-sol gel matrix 43 4-3-1 FTIR analysis 43 4-3-2 SEM 43 4-4 Mediators 47 4-4-1 Classification 47 4-4-2 Effect of sol gel matrix 47 4-5 Optimization of experimental variables 52 4-5-1 Effect of enzyme loading 52 4-5-2 Effect of mediator concentration 52 4-5-3 Effect of applied potential 54 4-5-4 pH effect of enzyme activity 57 4-5-5 Effect of enzyme activity 58 4-5-6 Optimum condition of chit-sol gel-GOx/IDA 60 4-6 Electrochemical response characteristics 61 4-6-1 Chronoamperometry response 61 4-6-2 Cyclic voltammograms response 63 4-6-3 Reproducibility of chit-sol gel-GOx/IDA 65 4-6-4 Interferences analysis 66 4-6-5 Limiting detection 67 4-7 Glucose sensing on different sol gel composite 68 4-7-1 FTIR analysis 68 4-7-2 Diffusion coefficients of different sol gels 69 4-7-3 Dual mode chronamperometric 71 4-7-4 Kinectics study of the biosensor 74 4-8 Performance of the biosensor 78 Chap 5 Conclusion 80 References: 81

1. Lee, S. H., Fang, H. Y., Chen, W. C. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate-chitosan oligomers mixture. Sensors and Actuators B: Chemical 2006;117(1):236-243.
2. Wild, S.R., Gojka, G., Anders, S., Richard, K., Hilary, G. Prevalence of Diabetes. Diabetes Care 2004 May 1, 2004;27(5):1047-1053.
3. Wang, S.G., Wang, Q., Yoon, R., Yang, D. J., Tian, J. Z., Li, J. Q., Zhou, Q. Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochemistry Communications 2003;5(9):800-803.
4. Clark, L.C., Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 1962;102(1):29-45.
5. Zou, Y., Xiang, C., Sun, L.X., Xu, F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics 2008;23(7):1010-1016.
6. Gerard, M., Chaubey, C., Malhotra, B. D. Application of conducting polymers to biosensors. Biosensors and Bioelectronics 2002;17(5):345-359.
7. Shirsat, M.D., Too, C.O., Wallace, G.G. Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film. Electroanalysis 2008;20(2):150-156.
8. Kang, X., Mai, Z., Zou, X., Cai, P., Mo, J. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta 2008;74(4):879-886.
9. Jin, P., Yamaguchi, A., AsariOi, F., Matsuo, S., Tan, J., Misawa H. Glucose Sensing Based on Interdigitated Array Microelectrode. Analytical Sciences 2001;17(7):841-846.
10. Dave, B.C., Dunn, B., Joan, S., Jeffrey, I. Sol-gel encapsulation methods for biosensors. Analytical Chemistry 1994;66(22):1120A-1127A.
11. Wang, J. Sol-gel materials for electrochemical biosensors. Analytica Chimica Acta 1999;399(1-2):21-27.
12. Jin, W., Brennan, JD. Properties and applications of proteins encapsulated within sol-gel derived materials. Analytica Chimica Acta 2002;461(1):1-36.
13. Avnir, D., Braun, Lev, Michael. Enzymes and Other Proteins Entrapped in Sol-Gel Materials. Chemistry of Materials 1994;6(10):1605-1614.
14. Chen, X., Jia, J., Dong, S. Organically Modified Sol-Gel/Chitosan Composite Based Glucose Biosensor. WILEY-VCH Verlag, 2003. p. 608-612.
15. Wang, B., Li, B., Wang, Z., Xu, G., Wang, Q., and Dong, S. Sol-Gel Thin-Film Immobilized Soybean Peroxidase Biosensor for the Amperometric Determination of Hydrogen Peroxide in Acid Medium. Analytical Chemistry 1999;71(10):1935-1939.
16. Wei, X., Zhang, M., Gorski, W. Coupling the Lactate Oxidase to Electrodes by Ionotropic Gelation of Biopolymer. Analytical Chemistry 2003;75(9):2060-2064.
17. Lewis, Penny, M., Leah, B., Robert, E., and Fritsch, I. Signal Amplification in a Microchannel from Redox Cycling with Varied Electroactive Configurations of an Individually Addressable Microband Electrode Array. Analytical Chemistry 2010;82(5):1659-1668.
18. Samarao, A.K. Amperometric characterization of a nano interdigital array (nIDA) electrode as an electrochemical sensor. UNIVERSITY OF CINCINNATI 2006.
19. Stradiotto, N.R., Yamanaka, H., and Zanoni, M.V. Electrochemical sensors: a powerful tool in analytical chemistry. Journal of the Brazilian Chemical Society 2003;14:159-173.
20. Chaubey, A., Malhotra, B.D. Mediated biosensors. Biosensors and Bioelectronics 2002;17(6-7):441-456.
21. Terry, L.A., White, S.F., Tigwell, L.J. The Application of Biosensors to Fresh Produce and the Wider Food Industry. Journal of Agricultural and Food Chemistry 2005;53(5):1309-1316.
22. Mohanty, S.P., Kougianos, E. Biosensors: a tutorial review. Potentials, IEEE 2006;25(2):35-40.
23. Montornes, J.M., Vreeke, M.S., Katakis, I. Glucose Biosensors: John Wiley & Sons, Ltd, 2008.
24. Wang, J. Glucose biosensors 40 years of advances and challenges. wiley 2001.
25. Wang, J., Thomas, D.F., Chen, A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Analytical Chemistry 2008;80(4):997-1004.
26. Wang, J. Electrochemical Glucose Biosensors. Chemical Reviews 2007;108(2):814-825.
27. Shen, J., Dudik, L., Liu, C.C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chemical 2007;125(1):106-113.
28. 劉建宏. 利用四氟化碳處理指叉狀電極並應用於葡萄糖感測器.
29. Peng, J., Fumika, A., Shigeki, M., Jiubin, T., and Hiroaki, M. Glucose Sensing Based on Interdigitated Array Microelectrode. Analytical Sciences 2001;Vol. 17 (2001) , No. 7 p.841.
30. Laschi, S., and Mascini, M. Planar electrochemical sensors for biomedical applications. Medical Engineering & Physics 2006;28(10):934-943.
31. Genies, E.M., Marchesiello, M. Conducting polymers for biosensors, application to new glucose sensors GOD entrapped into polypyrrole, GOD adsorbed on poly (3-methylthiophene). Synthetic Metals 1993;57(1):3677-3682.
32. 陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器. 2008.
33. Shirokova, V.I. Trends in the Development of the Potentiostatic Coulometry of Inorganic Substances. Journal of Analytical Chemistry 2003;58:859-863.
34. Markova, I.V. Coulometric Determination of Chromium(VI) and Copper(II) Present Simultaneously. Journal of Analytical Chemistry 2001;56:859-863.
35. Ma, L. Determination of the purity of potassium iodate by constant-current coulometry. Accreditation and Quality Assurance 2002;7:163.
36. Cedergren, A. Determination of Kinetics of the Karl Fischer Reaction Based on Coulometry and True Potentiometry. Anal Chem 2003;68:784-791.
37. Yeo, J., La, I. Integrated pulsed amperometry for the analysis of organic compounds. Microchemical Journal 2001;70:173-177.
38. Iroh, K., La, J.O. Electrochemical behavior of the polypyrrole/polyimide composite by potential step amperometry. J Power Sources 2003;124:355-359.
39. Hauser, T., Ka, P., Recent Developments in Electrochemical Detection Methods for Capillary Electrophoresis. Electroanalysis 2000;12:165.
40. Quintino, M. Winnischofer M., Nakamura K., Araki H., Toma and Angnes. Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickel-porphyrin. Anal Chim Acta 2005;539:215-222.
41. Dewald, M. M., and Wa, H.D. Stripping potentiometry of indium in aqueous chloride solutions. Microchemical Journal 2001;69:13-19.
42. Palmero, E., Ma, S. Analysis and speciation of arsenic by stripping potentiometry: a review. Talanta 2005;65:613-620.
43. Sanderson, D.G. Filar electrodes: steady state currents and spectroelectrochemistry at twin interdigitated electrodes. Anal Chem 1985;57:2388-2393.
44. Bard, A.J., Kittlesen, G.P., Varco, T., Shea, and Wrighton, M.S. Digital simulation of a measured electrochemical response of reversible redox couples at microelectrode arrays: consequencesarising from closely spaced ultramicroelectrodes. Anal Chem 1996;58:2321.
45. Morita, M., Na, T.H. Interdigitated array microelectrodes as electrochemical sensors. Electrochim Acta 1997;42:3177-3183.
46. Kunz, A.E., Ca, R.R. Large-area interdigitated array microelectrodes for electrochemical sensing Sensors and Actuators B: Chemical 2000. ;62(1).
47. Choi, J.W., Oh, K.W., Han, A., Wijayawardhana, C.A., Lannes, C., and Bhansali, S., Development and Characterization of Microfluidic Devices and Systems for Magnetic Bead-Based Biochemical Detection. Biomedical Microdevices 2001;3(3):191-200.
48. Zoski, C.G. Handbook of electrochemistry. ELSEVIER 2007.
49. Kim, S. K., Li, C., Thomas, J. H., Halsall, H. B. and Heineman, W. R. Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosensors and Bioelectronics 2004;20:886-893.
50. Paeschke, M., Wollenberger, U., Lisec, T., Schnakenberg, U., and Hintsche, R. Highly sensitive electrochemical microsensensors using submicrometer electrode arrays. Sensors and Actuators B: Chemical 1995;27(1-3):394-397.
51. Eftekhari, A. Variations of phenomenological coefficient of an electrochemical redox system in the course of cycling and aging. Chemical Physics Letters 2003;378:89-94.
52. Bjorefors, C., and Sa, L.N. Electrochemical Detection Based on Redox Cycling Using Interdigitated Microarray Electrodes at μL/min Flow Rates. Electroanalysis 2000;12:255.
53. Ma&zcaron, E., Niaura, R. G., Malinauskas, A. Voltammetric study of the redox processes of self-doped sulfonated polyaniline. Synth Met 2003;139:89-94.
54. Cullison, J. K, Buttaro, D. J., Acworth, I. N. and Bowers, M. L. Electrochemical detection of catecholamines at sub-5 fg levels by redox cycling. J Pharm Biomed Anal 1999;19:253-259.
55. Niwa, O., Morita, M., Tabei, H. Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: Consideration of redox cycling and collection efficiency. Analytical Chemistry 1990;62(5):447-452.
56. Paeschke, M., Kohler, T., Lisec, U., Schnakenberg and Hintsche R. Properties of interdigital electrode arrays with different geometries. Anal Chim Acta 1995;305:126-136.
57. Oldham, K.B., Raleigh, D.O. Modification of the Cottrell Equation to Account for Electrode Growth; Application to Diffusion Data in the Ag-Au System. Journal of The Electrochemical Society 1971;118(2):252-255.
58. Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.M. New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. Journal of the American Chemical Society 1993;115(1):1-10.
59. Saveant, J.M. In Advances in Polarography. Longmuir 1960.
60. Crank, J. Mathematics of Dijfusion. Oxford University 1964.
61. Niwa, O., Morita M., Tabei H. Highly sensitive small volume voltammetry of reversible redox species with an IDA electrochemical cell and its application to selective detection of catecholamine. Sensors and Actuators: B Chemical 1993;14(1-3):558-560.
62. Jonathan, R. Chitosan as an antimicrobial agent. Food technology international:32-33.
63. Li, W., Yuan, R., Chai, Y., Zhou, L., Chen, S., and Li, N. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor. Journal of Biochemical and Biophysical Methods 2008;70(6):830-837.
64. Yu, J., Liu, S., and Ju, H. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane. Biosensors and Bioelectronics 2003;19(4):401-409.
65. Kriz, P. Introduction to spectroscopy.
66. Mulchandani, P., Mulchandani, A., Kaneva, I., and Chen, W. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosensors and Bioelectronics 1999;14(1):77-85.
67. Miao, Y., Tan, S.N. Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Analytica Chimica Acta 2001;437(1):87-93.
68. Si, P., Kannan, P., Guo, L., Son, H., and Kim, D.H. Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Biosensors and Bioelectronics;In Press, Corrected Proof.
69. Tan, X., Li, M., Cai, P., Luo, L., Zou, X. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Analytical Biochemistry 2005;337(1):111-120.
70. Wang, B., Li, B., Deng, Q., and Dong S. Amperometric Glucose Biosensor Based on Sol gel Organic-inorganic Hybrid Material. Analytical Chemistry 1998;70(15):3170-3174.
71. Chen, X., Jia, J., Dong, S. Organically Modified Sol-Gel/Chitosan Composite Based Glucose Biosensor. Electroanalysis 2003;15(7):608-612.
72. Thomas, J.H. Applications of Microbead-Based Electrochemical Immunoassay. university of cincinniti 2003.
73. Compton, K.E., Ta, R.G. Electrochemical Non-enzymatic glucose biosensor: a perspective and a evaluation. international Journal of electrochemial science 2010:1246-1301.
74. Chen, L.Y., Fujita, T., Ding, Y., and Chen, M.W. A Three-Dimensional Gold-Decorated Nanoporous Copper Core–Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Advanced Functional Materials;20(14):2279-2285.
75. Beers, H. The merck manual of medical information. whitehouse station 2003;N.J: merck research laboratories.
76. Collinson, M.M., Zambrano P.J., Wang H., and Taussig J.S. Diffusion Coefficients of Redox Probes Encapsulated within Sol?el Derived Silica Monoliths Measured with Ultramicroelectrodes. Langmuir 1998;15(3):662-668.
77. Wang, J., Park, D.S., Pamidi, P.A. Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors. Journal of Electroanalytical Chemistry 1997;434(1-2):185-189.
78. Wang, B., Li, B., Deng, Q., Dong, S. Amperometric Glucose Biosensor Based on Sol Gel Organic-inorganic Hybrid Material. Analytical Chemistry 1998;70(15):3170-3174.
79. Liu, Y., Chu, Z., Zhang, Y., and Jin, W. Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian Blue modified electrode. Electrochimica Acta 2009;54(28):7490-7494.
80. Wang, X., Gu, H., Yin, F., and Tu, Y. A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosensors and Bioelectronics 2009;24(5):1527-1530.
81. Liang, R.P., Jiang, J.L., and Qiu, J.D. Preparation of GOD/Sol-Gel Silica Film on Prussian Blue Modified Electrode for Glucose Biosensor Application. Electroanalysis 2008;20(24):2642-2648.
82. Chen, Q., Kenausis, G.L., Heller, A. Stability of Oxidases Immobilized in Silica Gels. Journal of the American Chemical Society 1998;120(19):4582-4585.
83. Tan, X.C., Tian, Y.X., Cai, P.X, Zou, X.Y. Glucose biosensor based on glucose oxidase immobilized in sol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode. Analytical and Bioanalytical Chemistry 2005;381(2):500-507.
84. Wang, G.H., Zhang, L.M. Using Novel Polysaccharide silica Hybrid Material to Construct An Amperometric Biosensor for Hydrogen Peroxide. The Journal of Physical Chemistry B 2006;110(49):24864-24868.
85. Zuo, S., Teng, Y., Yuan, H., and Lan, M. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film. Sensors and Actuators B: Chemical 2008;133(2):555-560.

QR CODE