簡易檢索 / 詳目顯示

研究生: 楊慎威
Arwinda - Gusviputri
論文名稱: 以幾丁聚醣沉積於微白金探針為基礎所製備的電化學式雌二醇酵素連結免疫吸附分析技術
Electrochemical ELISA for Estradiol Based on Chitosan Deposited Micro-platinum Probes
指導教授: 曾婷芝
Tina T.-C.Tseng
口試委員: 鮑致寧
Ching-Ning Pao
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 47
中文關鍵詞: 電化學酵素免疫分析法雌二醇幾丁聚醣微電極4-氨基苯基磷酸白金
外文關鍵詞: Electrochemical ELISA, estradiol, chitosan, microelectrode, 4-aminophenyl phosphate, platinum
相關次數: 點閱:235下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用幾丁聚醣沉積層作為電化學式酵素免疫分析法中用以吸附捕捉抗體於白金電極上之材料,且成功製備出可增進電化學式雌二醇酵素免疫分析靈敏度之感測電極。在此檢測方法中,選定捕捉捕捉抗體為羊雌二醇抗體且以物理吸附的方式沉積在白金電極的幾丁聚醣沉積層上,偵測抗體以鼠雌二醇抗體及二次抗體為羊抗鼠免疫球蛋白交聯鹼性磷酯酶為組合的三明治式雌二醇酵素免疫分析法,二次抗體上酵素之基質與產物選定為4-氨基苯基磷酸與對氨基苯酚,本技術中的電極我們選用穩定性極高的白金電極,且使用小尺寸的微電極降低生產成本,此白金電極搭配選定之酵素基質與產物,我們決定了此電化學式酵素免疫分析的偵測電位(由酵素產物於白金電極表面之氧化電位所決定)為+0.14 V (vs. Ag/AgCl),將電極置於攪拌的三羥甲基氨基甲烷緩衝液(pH 9.0)中,施加+0.14 V的定電位進行電流量測。此感測電極靈敏度(感測極限)為0.27 pg/mL且有寬闊的感測範圍從0.27 pg/mL至100 ng/mL,本研究特別對黃體酮及17α-乙炔基雌二醇之交叉反應進行評估分別得到0.033%及3.35%。本研究也成功地建立血清的校正曲線,且本研究之製備方法簡單、方便、迅速、制式化,為適合進行商品化之技術。


    A convenient method for fabricating a sensitive indirect sandwich type electrochemical ELISA for the detection of estradiol using a chitosan electrodeposited platinum (Pt) wire microelectrode was proposed. In this assay, anti-17β estradiol produced in goat was used as the capture antibody which was immobilized on the chitosan coated Pt wire microelectrode, anti-17β estradiol 6 antibody produced in mouse was used as the detection antibody, and goat anti-mouse IgG conjugated with alkaline phosphatase (AP) was used as the secondary antibody. 4-Aminophenyl phosphate (4-APP) was chosen as the AP substrate and the oxidation potential of the electroactive AP product, 4-amino phenyl (4-AP), on the Pt electrode was determined to be +0.14 V (vs. Ag/AgCl). The electrochemical ELISA was detected by constant potential amperometry at +0.14 V in the Tris buffer (pH 9.0). The sensitivity (limit of detection) of this assay was 0.27 pg/mL with a wide detection range from 0.27 pg/mL up to 100 ng/mL. The assay specificity evaluated by testing the cross-reactivity of the assay against progesterone and 17α-ethynylestradiol was found to be 0.033% and 3.35%, respectively. The calibration curve of this assay tested in serum was also established. In this study, a sensitive, inexpensive, disposable, and easy to be fabricated electrochemical ELISA for estradiol was demonstrated.

    ABSTRACT i ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv LIST OF FIGURES v LIST OF TABLES vii CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 1 1.1 Immunoassay and ELISA 1 1.2 Electrochemical ELISA 6 1.3 Electrochemical ELISA for Estradiol 12 CHAPTER 2 EXPERIMENTAL METHODS 18 2.1 Materials 18 2.2 Equipments and Instrumentations 19 2.3 Procedure 20 CHAPTER 3 RESULT AND DISCUSSION 26 CHAPTER 4 CONCLUSION 35 REFERENCES 36

    [1] Darwish IA. Immunoassay methods and their applications in pharmaceutical analysis: Basic Methodology and Recent Advances. International Journal Biomedical Science. 2006;2:217-35.
    [2] Lesnik B. Immunoassay techniques in environmental analyses. In Encyclopedia of Analytical Chemistry. Washington: John Wiley & Sons Ltd; 2000. p. 2653 – 72.
    [3] Amino N, Hidaka Y. Various types of immunoassay. Nihon Rinsho. 1995;53:2107-11.
    [4] Osborn J. A review of radioactive and non-radioactive-based techniques used in life science applications—Part I: Blotting techniques. Amersham Bioscience; 2000. p. 1-4.
    [5] Soini E, Hemmit I. Fluoroimmunoassay: Present Status and Key Problems. Clinical Chemistry. 1979;25:353-61.
    [6] Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool: A review. Atlanta. 2000;51:415-39.
    [7] Bonwick GA, Smith CJ. Immunoassays: their history, development and current place in food science and technology. International Journal of Food Science & Technology. 2004;39:817-27.
    [8] Davies C. Principle of competitive and immunometric assay. In The Immunoassay Handbook. 4th ed. Editor: David Wild. Oxford: Elsevier Ltd; 2013. p. 29-47.
    [9] Gan SD, Patel KR. Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology. 2013;133:1-3.
    [10] Lequin RM. Enzyme immunoassay (EIA)/Enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry. 2005;51:2415-8
    [11] Patel DN, Sun X, Zhang G, G.O'Toole M, Cambron S, Keynton RS, et al. Ultralow detection of bio-markers using gold nanoshells. In Sensors and Biosensors, MEMS Technologies and its Applications. Editor: Sergey Yurish. Barcelona: International Frequency Sensor Association Publishing; 2013. p. 375-94.
    [12] Porstmann T, Kiessig ST. Enzyme immunoassay techniques an overview. Journal of Immunological Methods. 1992;150:5-21.
    [13] Deshpande SS. Immunoassay classification and commercial technology. Enzyme Immunoassays: From Concept to Product Development. 1st ed. New York: Chapman and Hall; 1996. p. 231- 264.
    [14] Parija SC. Antigen-antibody reaction. In Textbook of Microbiology & Immunology. Haryana: Elsevier; 2009. p. 106-117.
    [15] Exley D. 27th International Congress of Pure and Applied Chemistry. Helsinki: International Union of Pure Applied Chemistry; 1980.
    [16] United States Environmental Protection Agency. Available online: https://clu-in.org/characterization/technologies/immunoassay.cfm. (18th April 2015)
    [17] Crowther JR. System in ELISA. In Methods in Molecular Biology. 2nd ed. New York: Humana Press. 1995. p. 131-60 .
    [18] Abnova Corporation. ELISA Pairs Kits. Available online:
    http://wwwabnovacom/support/resourcesasp?switchfunctionid={70196CA1-59B1-40D0-8394-19F533EB108F}2010. (22nd April 2015)
    [19] Sino Biological Inc. Indirect ELISA, conventional but efficient. Available online: http://www.elisa-antibody.com/ELISA-Introduction/ELISA-types/indirect-elisa. (30th April 2015)
    [20] [Leinco Technologies. Indirect ELISA Protocol. Available online:
    http://www.leinco.com/indirect_elisa. (2nd May 2015)
    [21] Sino Biological Inc. Sandwich ELISA, Highly Sensitive. Available online: http://www.elisa-antibody.com/ELISA-Introduction/ELISA-types/sandwich-elisa. (22nd April 2015)
    [22] Chandra DG. Enzyme-linked Immunosorbent Assay. Available online: http://wwwiaszoologycom/elisa/. (3rd May 2015)
    [23] Ludwig GV, Rossi CA, Bull RL. Concepts for the development of immunodiagnostics assays for detection and diagnosis of biothreat agents. In: Biological Weapons Defense: Infectious Disease and Counterbioterrorism. Editors: Lindler LE, Jebeda F, Korch G. New Jersey: Humana Press Inc; 2005. p. 551-81.
    [24] Sino Biological Inc. Competitive ELISA: Basic. Available online: http://www.elisa-antibody.com/ELISA-Introduction/ELISA-types/competitive-elisa. (22nd April 2015)
    [25] Diagnostics. N. Enzyme linked immunosorbent assay (ELISA). Available online: https://www.nationaldiagnostics.com/electrophoresis/article/enzyme-linked-immunosorbent-assay-elisa (13th April 2015)
    [26] UK Essays. Advantages of direct detection of elisa biology essay. Available online: http://www.ukessays.com/essays/biology/advantages-of-direct-detection-of-elisa-biology-essay.php. (12th May 2015)
    [27] The Open University. Detecting Down’s syndrome in the unborn fetus. Available online: http://www.open.edu/openlearn/science-maths-technology/science/across-the-sciences/detecting-downs-syndrome-the-unborn-fetus/content-section-0. (15th May 2015)
    [28] Yu H-W, Halonen MJ, Pepper IL. Immunological methods. In: Environmental Microbiology. 3rd ed. Oxford: Elsevier's Science and Technology; 2015. p. 225-241.
    [29] Touhami A. Biosensors and nanobiosensors: design and application. In: Nanomedicine. Manchester. Editors: Seifalian A, Mel A, Kalaskar DM. Manchester: One Central Press; 2014.p. 374-402
    [30] Grieshaber D, MacKenzie R, Voros J, Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 2008;8:1400-58.
    [31] Guth U, Zosel J, Riedel J, Tran N, Berthold M, Vonau C, et al. Novel electrode materials for electrochemical sensors Sensing Technology (ICST), 2011 Fifth International Conference on Palmerston North IEEE. 2011. p. 685 - 9
    [32] Andreescu D, Andresscu S, Sadik OA. New Material for Biosensors, biochips, and molecular bioelectronics. In: Biosensors and Modern Biospecific Analytical Techniques. Editor: Gorton L. Netherlands: Elsevier B.V.; 2005. p. 285-319.
    [33] Gu S, Lu Y, Ding Y, Li L, Song H, Wang J, et al. A droplet-based microfluidic electrochemical sensor using platinum-black microelectrode and its application in high sensitive glucose sensing. Biosensos and Bioelectronics. 2014;55:106-12.
    [34] Fuxin Z, Ruilong Z, Yongfa Z. Platinum nanowire array electrochemical sensor: fabrication and characterization. Journal of Nanoscience and Nanotechnology. 2009;9:2437-41.
    [35] Gan N, Jia L, Zheng L. A Sandwich Electrochemical Immunosensor Using Magnetic DNA Nanoprobes for Carcinoembryonic Antigen. International Journal of Molecular Sciences. 2011;12:7410-23.
    [36] Sun G, Liu H, Zhang Y, Yu J, Yan M, Song X, et al. Gold nanorods-paper electrode based enzyme-free electrochemical immunoassay of prostate specific antigen using porous zinc oxide spheres-silver nanoparticles nanocomposites as labels. New Journal of Chemistry. 2015. p. 1-6
    [37] Wu K, Zhang Y, Yan M, Ge S, Yu J, Song X. An electrochemical immunoassay based on trepang-like gold electrodes and nanogold functionalized flower-like hierarchical carbon materials with improved sensitivity. New Journal of Chemistry. 2015;39:3452-60.
    [38] Yin J, Qi X, Yang L, Hao G, Li J, Zhong J. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochimica Acta. 2011;56:3884–9.
    [39] Baś B, Jedlińska K, Węgiel K. New electrochemical sensor with the renewable silver annular band working electrode: Fabrication and application for determination of selenium(IV) by cathodic stripping voltammetry. Electrochemistry Communications. 2014;49: 79–82.
    [40] Zhang S, Wright G, Yang Y. Materials and techniques for electrochemical biosensor design and construction. Biosensors and Bioelectronics. 2000;15:273–82.
    [41] Miller PR, Gittard SD, Edwards TL, Lopez DM, Xiao X, Wheeler DR, et al. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics. 2011;5:1-14.
    [42] Jamal M, Sarac AS, Magner E. Conductive copolymer-modified carbon fiber microelectrodes: electrode characterisation and electrochemical detection of p-aminophenol. Sensors and Actuator. 2004;97:59–66.
    [43] Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, et al. Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013;419:94-9.
    [44] Hadi M, Rouhollahi A, Yousefi M. Nanocrystalline graphite-like pyrolytic carbon film electrode for electrochemical sensing of hydrazine. Sensors and Actuators B: Chemical Journal. 2011;160:121–8.
    [45] Ku S, Palanisamy S, Chen S-M. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode. Journal of Colloid and Interface Science. 2013;411:182–6.
    [46] Thirumalraj B, Palanisamy S, Chen S-M. An amperometric nitrobenzene electrochemical sensor based on electrochemically activated graphite modified screen printed carbon electrode. International Journal of Electrochemical Science. 2015;10:4173 -82.
    [47] Ueno Y, Furukawa K, Hayashi K, Takamrua M, Hibino H, Tamechika E. Graphene-modified interdigitated array electrode: fabrication, characterization, and electrochemical immunoassay application. Analytical Science. 2013;29:55-60.
    [48] Cui F, Zhang X. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. Journal of Electroanalytical Chemistry. 2012;669:35-41.
    [49] Zhao X, Xia X, Yu S, Wang C. An electrochemical sensor for honokiol based on a glassy carbon electrode modified with MoS2/graphene nanohybrid film. Analytical Methods. 2014;6:9375-82.
    [50] Malinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchimica Acta. 2015;182:1113-22.
    [51] Li G, Miao P. Theoritical Background of Electrochemical Analysis. In: Electrochemical Analysis of Proteins and Cells. New York: Springer Science+Bussines Media; 2013. p. 5-15.
    [52] Heuschkel MO, Wirth C, Steidl E-M, Buisson B. Develompent of 3-D multi- electrode arrays for use with acute tissues slices. In:. Advances in Network Electrophysiology: Using Multi-Electrode Arrays. Editor: Taketani M, Baudry M. Singapore: Springer Science+Business Media, Inc; 2006. p. 69-111.
    [53] Kelly RS. Analytical Electrochemistry: The Basic Concepts. Journal of the Analytical Sciences Digital Library 2009:1-3.
    [54] Uslu B, Ozkan SA. Solid Electrodes in Electroanalytical Chemistry: Present Applications and Prospects for High Throughput Screening of Drug Compounds. Combinatorial Chemistry & High Throughput Screening. 2007;10:495-513.
    [55] O'Grady G, Paskaranandavadivel N, Angeli T, Du P, Windsor JA, Cheng L, et al. A comparison of gold vs silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays. Physiological Measurement. 2011;32:345-55.
    [56] Kurzawa C, Hengstenberg A, Schuhm W. Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films. Analytical Chemistry. 2002;74:355-61.
    [57] Guo X, Kuhlmann J, Heineman WR. Biosensor on Enzymes, Tissues, and Cells. In: Environmental Analysis by Electrochemical Sensors and Biosensors: Fundamentals. Editors: Moretto L, Kalcher K. New York: Springer Science+ Business Media; 2014. p. 283-351.
    [58] Bhardwaj T. A Review on Immobilization Techniques of Biosensors. International Journal of Engineering Research and Technology (IJERT). 2014;3:294-8.
    [59] Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances. 2012;30:489-511.
    [60] Rupcich N, Nutiu R, Shen Y, Li Y, Brennan JD. The use of functional nucleic acids in solid phase fluorimetric assays. In: Functional Nucleic Acids for Analytical Applications. Editors: Li Y, Lu Y. New York: Springer Science+ Business Media; 2009. p. 309-42.
    [61] Stefan R-I, Staden JF, Aboul-Enein HY. Electrochemical Sensors in Bioanalysis. Electrochemical Sensors Design. New York: Marcel Dekker, Inc; 2001.
    [62] Săndulescu R, Cristea C, Hârceagă V, Bodoki E. Environmental Biosensor. In: Electrochemical Sensors for Pharmaceutical and Environmental Analysis. Editor: Somerset V. Croatia: Intech; 2011. p. 277-301.
    [63] Ronkainen-Matsuno NJ, Halsall HB, Heineman WR. Electrochemical Immunoassay and Immunosensors. In: Immunoassay and Other Bioanalytical Techniques. Editor: Emon JM. Flourida: CRC Press; 2006. p. 385-99.
    [64] Wisdom GB. Enzyme-immunoassay. Clinical Chemistry. 1976;22:1243-55.
    [65] O'Kennedy R, Byrne M, O'Fagain C, Berns G. A Review of Enzyme-Immunoassay and a Description of a Competitive Enzyme-Linked Immunosorbent Assay for the Detection of Immunoglobulin Concentrations. Biochemical Education. 1990;18:136-40.
    [66] Scheller FW, Bauer CG, Makower A, Wollenberger U, Warsinke A, Bier FF. Immunoassay using Enzymatic Amplification Electrodes. In: Biomolecular Sensors. Editors: Gizeli E, Lowe CR. London: Taylor & Francis; 2004.
    [67] Wijayawardhana CA, Halsall HB, Heinemman WR. Milestones of electrochemical immunoassay at Cincinnati. In: Electroanalytical Methods Of Biological Materials. Editors: Brajter-toth A, Chambers J. New York: Marcel Dekker, Inc; 2002.
    [68] Laczka O, García-Aljaro C, Campo FJd, Pascual FXM, Mas-Gordi J, Baldrich E. Amperometric detection of Enterobacteriaceae in river water by measuring β-galactosidase activity at interdigitated microelectrode arrays. Analytica Chimica Acta. 2010;677:156–61.
    [69] Harper A, Anderson MR. Electrochemical Glucose Sensors—Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction. Sensors. 2010;10:8248-74.
    [70] Dimcheva N, Horozova E, Jordanova Z. A Glucose oxidase immobilized electrode based on modified graphite. Verlag Z Naturforsch. 2002;57:705-11.
    [71] Ahammad AJS. Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. Biosensors and Bioelectronics. 2013:1-11.
    [72] Masson M, Liu Z, Haruyama T, Kobatake E, Ikariyama Y, Aizawa M. Immunosensing with amperometric detection, using galactosidase as label and p-aminophenyl-D-galactopyranoside as substrate. Analytica Chimica Acta. 1995;304:353-9.
    [73] Yakovleva J, Emneus J. Electrochemical Immunoassay. In: Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications. Editor: Bartlett P. England: John Wiley & Sons Ltd.; 2008. p. 377-410.
    [74] Wang Y, Xu H, Zhang J, Li G. Electrochemical Sensors for Clinic Analysis. Sensors. 2008;8:2043-81.
    [75] Zhu B. Patent application titled "Porous particle reagent compositions devices, and methods for biosensors". In: Enzymes—Advances in Research and Application. Editor: Acton QA. Georgia: Scholarly Editions; 2013.
    [76] Rehman R, Jawaid S, Gul H, Khan R. Impact of peak estradiol levels on reproductive outcome of intracytoplasmic sperm injection. Pakistan Journal of Medical Science 2014;30:986-91.
    [77] Storck S. Estradiol Blood Test. Bethesda: U.S. Department of Health and Human Services National Institutes of Health. Available online:
    http://www.nlm.nih.gov/medlineplus/ency/article/003711.htm.
    [78] Elmlinger MW, Kuhnel W, Ranke MB. Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clinical Chemistry and Laboratory Medicine. 2002;40:1151-60.
    [79] American Association for Clinical Chemistry. Esterogens. Available online: Available online: https://labtestsonline.org/understanding/analytes/estrogen/tab/test/ (3rd June 2015)
    [80] American Society of Clinical Oncology. Value of serum estradiol during the premenopousal and post menopousal periods at the time of aromatase inhibitor administration. Available online: http://meetinglibrary.asco.org/content/52316-74 (4th June 2015)
    [81] Yilmaz B, Kadioglu Y. Determination of 17 β-estradiol in pharmaceutical preparation by UV spectrophotometry and high performance liquid chromatography methods. Arabian Journal of Chemistry. 2013;2:1-7.
    [82] Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, 17 beta-estradiol, and 17alpha-ethynyl estradiol on powdered activated carbon. Water Research. 2003;37:3530-7.
    [83] Mitchell J. Small Molecule Immunosensing Using Surface Plasmon Resonance. Sensors. 2010;10:7323-46.
    [84] [84] Adamczyk M, Chen Y-Y, Gebler JC, Johnson DD, Mattingly PG, Moore JA, et al. Evaluation of chemiluminescent estradiol conjugates by using a surface plasmon resonance detector. Steroids. 2000;65:295–303.
    [85] Ou H, Luo Z, Jiang H, Zhou H, Wang X, Song C. Indirect Inhibitive Immunoassay for Estradiol Using Surface Plasmon Resonance Coupled to Online In-Tube SPME. Analytical Letters. 2009;42:2758-73.
    [86] Seifert M. Luminescent enzyme-linked receptor assay for estrogenic compounds. Analytical Bioanaytical Chemistry. 2004;378:684-7.
    [87] Ström JO, Theodorsson A, Theodorsson E. Substantial discrepancies in 17β-estradiol concentrations obtained with three different commercial direct radioimmunoassay kits in rat sera. Scandinavian Journal of Clinical and Laboratory Investigation. 2008;68:806-13.
    [88] Geisler Ju, Ekse D, Helle H, Duong NK, Lnning PE. An optimised, highly sensitive radioimmunoassay for the simultaneous measurement of estrone, estradiol and estrone sulfate in the ultra-low range in human plasma samples. Journal of Steroid Biochemistry and Molecular Biology. 2008;109:90-5.
    [89] Fonseca AP, Oliveira JM, Esteves V, Cardoso M. Using Radioimmunoassay to Investigate the Uptake by Amphibians of Estrogens Present in WWTP´S Effluent. Pollution Effects and Control. 2013;1:1-4.
    [90] England BG, Parsons GH, Possle RM, McConnell DS, Midgley AR. Ultrasensitive semiautomated chemiluminescent immunoassay for estradiol. Clinical Chemistry. 2002;48:1584-6.
    [91] Boever JD, Mares A, Stans G, Bosmans E, Kohen F. Comparison of chemiluminescent and chromogenic substrates of alkaline phosphatase in a direct immunoassay for plasma estradiol. Analytica Chimica Acta 1994;303 143-8
    [92] Chiu ML, Tseng TT-C, Monbouquette HG. A convenient, homogeneous enzyme-immunoassay for estradiol detection. Biotechnology and Applied Biochemistry. 2011;58:75-82.
    [93] Kokko L, Johansson N, Lovgren T, Soukka T. Enzyme inhibitor Screening Using a Homogeneous Proximity-Based Immunoassay for Estradiol. Biomolecular Screening 2005;10:348-54.
    [94] [94] Korenman SG, Stevens RH, Carpenter LA, Robb M, Niswender GD, Sherman BM. Estradiol radioimmunoassay without chromatography: procedure, validation and normal values. The Journal of Clinical Endocrinology & Metabolism. 2013;38:718–20.
    [95] Bartell SE, Schoenfuss HL. Affinity and matrix effects in measuring fish plasma vitellogenin using immunosorbent assays: considerations for aquatic toxicologists. ISRN Toxicology. 2012;2012:1-8.
    [96] Thompson M. Immunoanalysis – Part 2: Basic Principles of ELISA. London, UK: Royal Society Chemistry; 2010. p. 1-2.
    [97] Bhimji A, Zaragoza AA, Live LS, Kelley SO. Electrochemical enzyme-linked immunosorbent assay featuring proximal reagent generation: detection of human immunodeficiency virus antibodies in clinical samples. Analytical Chemistry. 2013;85 6813–9.
    [98] Liu X, Wang X, Zhang J, Feng H, Liu X, Wong DKY. Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP–Protein G scaffold. Biosensosr and Bioelectronics. 2012;35(1):56-62.
    [99] Sha H, YuxingBai, Li S, Wang X, Yin Y. Comparison between electrochemical ELISA and spectrophotometric ELISA for the detection of dentine sialophosphoprotein for root resorption. American Journal of Orthodontics and Dentofacial Orthopedics. 2014;145:36-40.
    [100] Karen L. Cox B, Viswanath Devanarayan P, Kriauciunas A, Joseph Manetta B, Chahrzad Montrose P, Sitta Sittampalam P. Immunoassay Methods. In: Assay Guidance Manual. Editors: Sittampalam GS, Coussens NP, Nelson H, et al. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2012.
    [101] Ricci F, GianlucaAdornetto, Palleschi G. A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta. 2012;84:74-83.
    [102] Mercodia. Mercodia ELISA Technology. Available online:
    http://www.mercodia.se/learning-center/mercodia-elisa-technology/principle-of-technology.html (12th June 2015)
    [103] Osmekhina E, Neubauer A, Klinzing K, Myllyharju J, Neubauer P. Sandwich ELISA for quantitative detection of human collagen prolyl 4-hydroxylase. Microbial Cell Factories. 2010;9:1-11.
    [104] Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB. Electrochemical detection of 17 beta-estradiol using DNA aptamer immobilized gold electrode chip. Biosensors and Bioelectronics. 2007; 22:2525-31.
    [105] Liu X, Wong DKY. Electrocatalytic detection of estradiol at a carbon nanotube|Ni(Cyclam) composite electrode fabricated based on a two-factorial design. Analytica Chimica Acta. 2007;594:184-91.
    [106] [106] Kuramitz H, Matsuda M, Thomas JH, Sugawara K, Tanaka S. Electrochemical immunoassay at a 17 beta-estradiol self-assembled monolayer electrode using a redox marker. Analyst. 2003;128:182-6.
    [107] Zhang S, Wang Y, Zhang Y, Yan T, Yan L, Wei Q, et al. An ultrasensitive electrochemical immunosensor for determination of estradiol using coralloid Cu2S nanostructures as labels. Royal Society of Chemistry. 2014;5:6512–7.
    [108] Yu Y, Zhou Y, Wu L, JinfangZhi. Electrochemical biosensor based on boron-doped diamond electrodes with modified surfaces. International Journal of Electrochemistry. 2011;2012:1-10.
    [109] Draisci R, Volpe G, Compagnone D, Purificato, Quadria Fd, Palleschi G. Development of an electrochemical ELISA for the screening of 17beta-estradiol and application to bovine serum. Analyst. 2000;125:1419-23.
    [110] Volpe G, Fares G, Quadri Fd, Draisci R, Ferretti G, Marchiafava C, et al. A disposable immunosensor for detection of 17beta-estradiol in non-extracted bovine serum. Analytica Chimica Acta. 2006;572 11–6.
    [111] Pemberton RM, Mottram TT, Hart JP. Development of a screen-printed carbon electrochemical immunosensor for picomolar concentrations of estradiol in human serum extracts. Journal of Biochemical and Biophysical Method. 2005;63:201–12.
    [112] Ojeda I, López-Montero J, Moreno-Guzmán M, Janegitz BC, González-Cortés A, Yá˜nez-Sede˜no P, et al. Electrochemical immunosensor for rapid and sensitive determination of estradiol. Analytica Chimica Acta. 2012;743:117– 24.
    [113] Ang LF, Por LY, Yam MF. Study on different molecular weights of chitosan as an immobilization matrix for a glucose biosensor. PLoS ONE. 2013;8.
    [114] Tseng TTC, Yao J, Chan W-C. Selective Enzyme Immobilization on Arrayed Microelectrodes for the Application of Sensing Neurotransmitters. Biochemical Engineering Journal. 2013;78:146-53.
    [115] Tseng TT-C, Chang C-F, Chan W-C. Fabrication of Implantable, Enzyme-immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo. Molecules. 2014;19:7341-55.
    [116] Fernandes R, Wu L-Q, Chen T, Yi H, Rubloff GW, Ghodssi R, et al. Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 2003;19:4058–62.
    [117] Yi H, Wu L-Q, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, et al. Biofabrication with chitosan. Biomacromolecules. 2005;6:2881–94.
    [118] Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, et al. Chitosan: An integrative biomaterial for lab-on-a-chip devices. Lab on Chip. 2010:3026–42.
    [119] Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. Institute for Laboratory Animal Research Journal. 2005;46:258-68.
    [120] Gibbs J. Effective blocking procedures. In: Elisa Technical Buletin. Acton: Life Sciences; 2001. p. 1-6
    [121] MD Bioscience. Choosing the right antibody when developing an ELISA. Available online: http://www.mdbioproducts.com/blog/articles/choosing-right-antibody-when-developing-elisa-part-2 (28th June 2015)
    [122] Khalid W, Göbel G, Hühn D, Montenegro J-M, Rivera-Gil P, Lisdat F, et al. Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode. Journal of Nanobiotechnology. 2011;9:1-10.
    [123] Volpe G, Compagnone D, Draisci R, Palleschi G. 3,3',5,5'-Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays. A comparative study. Analyst. 1998;123 1303–7.
    [124] Van Emon JM, Chuang JC, Trejo RM, Durnford J. Intergratting bioanalytical capability in an environmental analytical laboratory. In: Immunoassay and Other Bioanalytical Techniques. 1st ed. Editors: Ronkainen-Matsuno NJ, Halsall HB, Heineman WR. Florida: Taylor&Francis Group; 2007.
    [125] Teixeira S, Ferreira NS, Conlan RS, Guy OJ and Sales MGF. Chitosan/AuNPs modified graphene electrochemical sensor for label-free human chorionic gonadotropin detection. Electroanalysis.2014; 26:2591-8.
    [126] Tang HT, Lunte CE, Halsall HB, Heineman WR. p-aminophenyl phosphate: an improved substrate for electrochmical enzyme immunoassay. Analytica Chimica Acta. 1988;214:187-95.

    QR CODE