簡易檢索 / 詳目顯示

研究生: 張詠淇
Yong-Chi Chang
論文名稱: CoCuFeNi高熵合金與純錫銲料之界面微觀變化探討
Interfacial reaction between CoCuFeNi and Sn
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 朱瑾
Jinn P. Chu
高振宏
C. Robert Kao
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 78
中文關鍵詞: 高熵合金界面反應無鉛銲料
外文關鍵詞: High entropy alloys (HEAs), interfacial reaction, Lead-free solders
相關次數: 點閱:296下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

錫基銲料具有優良的潤濕性且具有相對較低熔點的特性,因此在目前電子構裝技術領域中,常被使用作為電子元件內部的訊號之材料,目前錫基銲料都是使用沒有添加對環境及人體有害的鉛金屬[1];又已知銅金屬材料是人類文明發展中最早使用的金屬,且具有相對完整的系統架構,且由於銅金屬具有良好的導電、耐腐蝕和延展等物理特性,因而常被作為電子元件中傳遞電能與熱能的基本材料,其中引腳框架即為電子構裝系統中的一種電子元件。引腳框架(Lead frame)是作為電能連通與散熱的管道,也是晶片承載的合金框架,是由特殊封裝引線和銲盤組成,引線會將電信號和電源傳送到晶片再從晶片傳送到封裝外部。若本身材質為銅金屬,有時會將外露的引線會鍍上鎳、錫或金以避免氧化。這幾項功能也說明著,引腳框架必須具有較高的導電導熱特性與優異的機械性質。
高熵合金技術具開創性合金觀念已發展十多年,其打破已往以單一元素為主的配置觀念,破除合金元素越多則越脆弱的迷思;由於高熵合金之成品相較於一般傳統材料擁有更優異的機械性質及良好的化學物理特性,故在現今已應用於各種不同領域。然而,目前的學術研究以及相關文獻大多著重研發新一代高熵合金,而現行廣為學術界及業界所使用的高熵合金配方其相關的實際應用鮮少被關注,更較少研究關於添加電子構裝領域中常使用的銅(Cu)元素,其對於高熵合金性能的影響;也甚少觀察在構裝系統中至關重要的銲錫與基板的接點處,包含接合面的界面反應形態及微觀形貌的相組成等等。
故本研究以真空電弧融煉方式製備等莫耳比例的CoCuFeNi高熵合金,並利用封管及相關技術將無鉛純錫銲料與自行配置含銅元素的CoCuFeNi高熵合金形成反應偶,並在反應溫度450度下進行高溫時效,反應時間分別為30、60、100、150、240、360、480、600分鐘的液/固界面反應,經過金相處理後再分別進一步以高解析度場發射掃描式電子顯微鏡 (field emission scanning electron microscope, SEM; JEOL 7900F; Japan) 觀察界面所生成的介金屬相,並搭配能量散射光譜儀 (energy dispersive spectrometer, EDS; Oxford; England) 針對高熵合金基材及介金屬相做定量組成分析,探討時效反應後界面端與銲料端兩者所生成之介金屬化合物 (intermetallic compound,IMC) 的種類與生長形態。

首先探討CoCuFeNi/Sn 反應偶之界面端所成長之介金屬相形態,研究結果顯示在反應溫度450度下,時效時間30分鐘,最初在界面處首先生成層狀的(Fe, Co)Sn2相;在時效時間延長至60分鐘後則可以觀察到界面處的層狀(Fe, Co)Sn2介金屬相有變厚的現象,這可以歸因於晶粒成長的過程,隨著時間增加至100及150分鐘,相結構沒有明顯轉變的現象,且在(Fe, Co)Sn2相周圍成長出細長條狀的相結構,然而隨著時效時間增加240至360分鐘此一層狀結構逐漸轉為鈷(Co)元素比例較高之(Fe, Co)Sn2相,結果顯示Co元素隨時間增加慢慢固溶至界面處之介金屬相中,且觀察到界面處晶粒尺寸大小隨著時效時間遞增,當時間長達480至600分鐘時,界面處仍以Co含量較高的比例生成(Fe, Co)Sn2相;且在XRD分析結果顯示,界面處在長時間時效時間至600分鐘,所生成的相仍以FeSn2為主要的相結構。
本實驗接著探討CoCuFeNi/Sn 反應偶之銲料端所成長之介金屬相形態,可以觀察到隨著時效時間的增加,銲料端內部的相結構也有明顯的改變,在時效時間30分鐘有析出相存在,以EDS分析鑑定為(Fe, Co)Sn2相,且發現此析出相為一立體結構,在結構中央呈現八面體狀態,在此結構的上下端為片狀結構,晶粒大小也隨時效延長增加有增加的趨勢。


Tin-based solder has excellent wettability and a relatively low melting point. Therefore, in the electronic packaging technology industry, it is often used as a material for electronic components. However, Lead metal that is harmful to the environment and human body [1]; it is also known that copper metal material is the earliest metal used in the development of human civilization, and has a relatively complete system architecture, and because copper metal has good electrical conductivity, corrosion resistance and ductility and other physical properties. Therefore, it is often used as the basic material for transmitting electrical energy and thermal energy in electronic components, and the lead frame is an electronic component in the electronic packaging system. The lead frame is used as a conduit for power communication and heat dissipation, and is also an alloy frame carried by the chip. It is composed of special package leads and pads. The leads will transmit electrical signals and power to the chip and then from the chip to the outside of the package. . If the material itself is copper, the exposed leads are sometimes plated with nickel, tin or gold to prevent oxidation. These functions also indicate that the lead frame must have high electrical and thermal conductivity and excellent mechanical properties.
The pioneering alloy concept of high-entropy alloy technology has been developed for more than ten years. It breaks the previous configuration concept of a single element and breaks the myth that the more alloy elements are more fragile; because the finished product of high-entropy alloy is more fragile than the general traditional The material has more excellent mechanical properties and good chemical and physical properties, so it has been used in various fields today. However, most of the current academic research and related literature focus on the development of a new generation of high-entropy alloys, while the high-entropy alloy formulations that are widely used in academia and industry are rarely concerned about their related practical applications, and even less research on adding electrons The copper (Cu) element commonly used in the field of packaging has its influence on the performance of high-entropy alloys; it is also rarely observed at the junction between the solder and the substrate, which is very important in the packaging system, including the interface reaction morphology of the joint surface and The phase composition of the microscopic morphology, etc.
Therefore, in this study, the CoCuFeNi high-entropy alloy with equal molar ratio was prepared by vacuum arc melting, and the lead-free pure tin solder and the self-configured CoCuFeNi high-entropy alloy containing copper elements were formed by sealing tube and related technologies to form a reaction couple, and in the reaction. High-temperature aging at a temperature of 450 degrees, the reaction time is 30, 60, 100, 150, 240, 360, 480, 600 minutes for the liquid/solid interface reaction, after metallographic treatment, and then further high-resolution field emission scanning A field emission scanning electron microscope (SEM; JEOL 7900F; Japan) was used to observe the intermetallic phase generated at the interface, and an energy dispersive spectrometer (EDS; Oxford; England) was used to analyze the high-entropy alloy substrate and intermetallic phase. Quantitative compositional analysis of the metal phase was performed to investigate the type and growth morphology of the intermetallic compound (IMC) formed between the interface end and the solder end after the aging reaction.

Firstly, the morphology of the intermetallic phase grown at the interface end of the CoCuFeNi/Sn reaction couple was discussed. The results showed that at the reaction temperature of 450°C and the aging time of 30 minutes, a layered (Fe, Co)Sn2 phase was first formed at the interface; After the aging time is extended to 60 minutes, the layered (Fe, Co)Sn2 intermetallic phase at the interface can be observed to thicken, which can be attributed to the process of grain growth, with time increasing to 100 and At 150 minutes, the phase structure did not change significantly, and a slender phase structure grew around the (Fe, Co)Sn2 phase. However, as the aging time increased from 240 to 360 minutes, the layered structure gradually turned into cobalt ( The (Fe, Co)Sn2 phase with a higher proportion of Co) element, the results show that the Co element slowly dissolves into the intermetallic phase at the interface with the increase of time, and it is observed that the grain size at the interface increases with the aging time. When the time is as long as 480 to 600 minutes, the (Fe, Co)Sn2 phase is still formed at the interface with a higher proportion of Co content; and the XRD analysis results show that the interface is aged for a long time to 600 minutes. The phase is still dominated by FeSn2.
In this experiment, the morphology of the intermetallic phase grown on the solder end of the CoCuFeNi/Sn reaction couple was discussed. It can be observed that with the increase of the aging time, the phase structure inside the solder end also changed significantly, and the precipitation phase existed in the aging time of 30 minutes. , identified as (Fe, Co)Sn2 phase by EDS analysis, and found that this precipitation phase is a three-dimensional structure, showing an octahedral state in the center of the structure, and the upper and lower ends of this structure is a sheet-like structure, and the grain size also changes with age. There is an increasing trend for prolonged increase.

第1章、 摘要 V Abstract VII 致謝 X 目錄 XI 圖目錄 XIII 前言 1 第2章、 文獻回顧 3 2-1 電子構裝技術 3 2-1-1 電子構裝簡介 3 引腳框架簡介 5 2-2 CoCuFeNi高熵合金相關文獻 7 2-3 無鉛錫基銲料 13 2-4 高熵合金與無鉛銲料之界面反應相關文獻 14 第3章、 實驗方法 22 3-1 CoCuFeNi 高熵合金基材製備 22 3-1-1 以電弧熔煉法製備CoCuFeNi高熵合金 22 3-1-2 第一步驟真空封管實驗 23 3-1-3 高溫均質化處理 24 3-2 CoCuFeNi/Sn 反應偶製備 24 3-2-1 反應偶製備前處理 24 3-2-2 第二步驟真空封管實驗 25 3-2-3 於450度下進行液/固反應 25 3-3 界面觀察及分析實驗 25 3-3-1 金相實驗 25 3-3-2 高熵合金及銲錫界面觀察與分析 26 第4章、 結果與討論 28 4-1 CoCuFeNi高熵合金基材 28 4-2 CoCuFeNi/Sn 液/固反應偶於時效溫度450度隨時間變化之界面端形態 34 4-2-1 時效時間30分鐘至600分鐘 34 4-3 CoCuFeNi/Sn 反應偶於時效溫度450度隨時間變化之銲料端形態 41 4-3-1 時效時間30分鐘至600分鐘 41 第5章、 結論 45 第6章、 參考文獻 46 第7章、 附錄 52 相平衡 52 7-1-1 Co-Sn二元系統相平衡圖 54 2-4-2 Co-Ni二元系統相平衡圖 55 2-4-3 Fe-Co二元系統相平衡圖 56 2-4-4 Co-Cu二元系統相平衡圖 57 2-4-5 Cu-Fe二元系統相平衡圖 58 2-4-6 Cu-Ni二元系統相平衡圖 59 2-4-7 Cu-Sn二元系統相平衡圖 60 2-4-8 Fe-Ni二元系統相平衡圖 61 2-4-9 Fe-Sn二元系統相平衡圖 62 2-4-10 Ni-Sn二元系統相平衡圖 63

[1] S. Fürtauer, D. Li, D. Cupid, and H. Flandorfer, The Cu–Sn phase diagram, Part I: New experimental results, Intermetallics, 34 (2013) 142-147.
[2] 胡天鎮,電子構裝無鉛焊料受應力反應機械性質探討,國立中興大學精密工程學系所博士論文(2013)
[3] S.-C. Chao, W.-C. Huang, J.-H. Liu, J.-M. Song, P.-Y. Shen, C.-L. Huang, L.-T. Hung, and C.-H. Chang, Oxidation characteristics of commercial copper-based lead frame surface and the bonding with epoxy molding compounds, Microelectronics Reliability, 99 (2019) 161-167.
[4] X. Liu, S. Xiang, S. Yang, R. Shi, and C. Wang, Experimental investigation of phase equilibria in the Cu–Ni–Si ternary system, Journal of Alloys and Compounds, 578 (2013) 439-447.
[5] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004) 299-303.
[6] K. Huang, L. Chen, X. Lin, H. Huang, S. Tang, and F. Du, Wear and Corrosion Resistance of Al0.5CoCrCuFeNi High-Entropy Alloy Coating Deposited on AZ91D Magnesium Alloy by Laser Cladding, Entropy, 20 (2018) 915.
[7] Y.L. Chou, J.W. Yeh, and H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science, 52 (2010) 2571-2581.
[8] H. Kwak and T. Hubing, An Overview of Advanced Electronic Packaging Technology, 2007.
[9] V. Murray, D. Llamocca, J. Lyke, K. Avery, Y. Jiang, and M. Pattichis, Cell-Based Architecture for Adaptive Wiring Panels: A First Prototype, Journal of Aerospace Information Systems, 10 (2013) 187-208.
[10] J.F. Breedis, P.Y. Chia, and Y. Goh, Electronic Packaging: Lead Frame Materials☆, in: Reference Module in Materials Science and Materials Engineering, Elsevier, 2017, pp.
[11] O. Van Der Sluis, C.A. Yuan, W.D. Van Driel, and G.Q. Zhang, Advances in Delamination Modeling, in: Springer US, 2008, pp. 61-91.
[12] R. Furuno, Y. Takatuji, K. Kubo, and T. Haruyama, Improvement of the Adhesive Strength of the Leadframe and Epoxy Resin by Forming Organic Molecules-Metal Composite Interface, Electronics and Communications in Japan, 100 (2017) 67-71.
[13] 马莒生, 黄福祥, 黄乐, 耿志挺, 宁洪龙, and 韩振宇, 铜基引线框架材料的研究与发展, 功能材料, 33 (2002) 1-4.
[14] F. Huang, J. Ma, H. Ning, Y. Cao, and Z. Geng, Precipitation in Cu–Ni–Si–Zn alloy for lead frame, Materials Letters, 57 (2003) 2135-2139.
[15] J.F. Breedis, Electronic Packaging: Lead Frame Materials, in: 2016, pp.
[16] 沈威廷, 導線架多層式打線端點自動校正之光學檢測系統設計與開發, in 工業工程與管理系所. 2009, 國立交通大學. p. 57.
[17] W.B. Lee, C.F. Cheung, L.K. Chan, and W.M. Chiu, An investigation of process parameters in the dam-bar cutting of integrated circuit packages, Journal of Materials Processing Technology, 66 (1997) 63-72.
[18] H. Fuxiang, H. Le, M. Jusheng, W. Qian, W. qinglei, and C. Lu, The investigation of some properties of copper alloys for leadframe, 2000.
[19] ''RoHS Regulations''EU-Directive95/EC (2003)
[20] ''RoHS Regulations''EU-Directive 96/EC (2003)
[21] 林育任,Si/Ni/In與Cu/Ag引腳架固晶接合研究,國立臺灣大學材料科學與工程學系碩士論文(2011)
[22] A. Nishimura, S. Kawai, and G. Murakami, Effect of lead frame material on plastic-encapsulated IC package cracking under temperature cycling, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 12 (1989) 639-645.
[23] 呂. 張文芹, 馮小龍. 蝕刻型高密度引線框架銅合金帶材的研製進展[J]. 有色金屬材料與工程, , 41(3): 1-6., 蝕刻型高密度引線框架銅合金帶材的研製進展[J]. 有色金屬材料與工程, 41(3) (2020) 1-6.
[24] Z. Zhao, Y. Zhang, B. Tian, Y. Jia, Y. Liu, K. Song, and A.A. Volinsky, Co effects on Cu-Ni-Si alloys microstructure and physical properties, Journal of Alloys and Compounds, 797 (2019) 1327-1337.
[25] T. Hara, Y. Kanegae, and T. Tonogi, Solidification simulation of copper-iron alloy for lead frame by phase-field method, in: Elsevier, 2014, pp. 245-249.
[26] M. Wang, Q.-r. Yang, Y.-b. Jiang, Z. Li, Z. Xiao, S. Gong, Y.-r. Wang, C.-l. Guo, and H.-g. Wei, Effects of Fe content on microstructure and properties of Cu–Fe alloy, Transactions of Nonferrous Metals Society of China, 31 (2021) 3039-3049.
[27] X. Sun, H. Zhu, J. Li, J. Huang, and Z. Xie, High entropy alloy FeCoNiCu matrix composites reinforced with in-situ TiC particles and graphite whiskers, Materials Chemistry and Physics, 220 (2018) 449-459.
[28] H. Ma, Y. Shao, and C.H. Shek, CoCuFeNi high entropy alloy reinforced by in-situ W particles, Materials Science and Engineering: A, 797 (2020) 140-218.
[29] H. Ma, Y. Shao, and C.H. Shek, Microstructure, grain growth behavior and mechanical properties of W-CoCuFeNi tungsten heavy alloys prepared by infiltration, International Journal of Refractory Metals and Hard Materials, 98 (2021) 105572.
[30] L. Liu, J.B. Zhu, C. Zhang, J.C. Li, and Q. Jiang, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Materials Science and Engineering: A, 548 (2012) 64-68.
[31] M. Pohl, O. Storz, and T. Glogowski, Effect of intermetallic precipitations on the properties of duplex stainless steel, Materials Characterization, 58 (2007) 65-71.
[32] B.E. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, and E.J. Lavernia, Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy, Acta Materialia, 181 (2019) 25-35.
[33] B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375-377 (2004) 213-218.
[34] M. Beyramali Kivy, M. Asle Zaeem, and S. Lekakh, Investigating phase formations in cast AlFeCoNiCu high entropy alloys by combination of computational modeling and experiments, Materials & Design, 127 (2017) 224-232.
[35] A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, and V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews, 83 (2014) 1027-1061.
[36]
[37] G.F. Ma, H. Ye, H.L. Zhang, C.L. He, and H.F. Zhang, Wettability of molten Sn on AlCoCrCuxFeNi high-entropy alloy, Materials Chemistry and Physi Z.Y. Zheng, X.C. Li, C. Zhang, and J.C. Li, Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys, Materials Science and Technology, 31 (2015) 1148-1152.cs, 199 (2017) 1-6.
[38] C.Y. Liu and K.N. Tu, Morphology of wetting reactions of SnPb alloys on Cu as a function of alloy composition, Journal of Materials Research, 13 (1998) 37-44.
[39] G.F. Ma, Z.K. Li, H. Ye, C.L. He, H.F. Zhang, and Z.Q. Hu, Wetting and interface phenomena in the molten Sn/CuFeNiCoCr high-entropy alloy system, Applied Surface Science, 356 (2015) 460-466.
[40] M.-l. Li, L.-l. Gao, L. Zhang, W.-m. Long, S.-j. Zhong, and L. Zhang, Interfacial evolution of pure Sn solder bearing silicon carbide nanowires under isothermal aging and thermal cycling, Journal of Materials Research and Technology, 15 (2021) 3974-3982.
[41] M. Yang, M. Li, and C. Wang, Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering, Intermetallics, 25 (2012) 86-94.
[42] K.-k. Xu, L. Zhang, and N. Jiang, Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing, Journal of Materials Science: Materials in Electronics, 32 (2021) 2655-2666.
[43] H. Shahmir, P. Asghari-Rad, M.S. Mehranpour, F. Forghani, H.S. Kim, and M. Nili-Ahmadabadi, Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation, Materials Science and Engineering: A, 807 (2021) 140875.
[44] B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system, Journal of Alloys and Compounds, 493 (2010) 148-153.
[45] Y. Fang, X. Jiang, D. Mo, D. Zhu, and Z. Luo, A review on dissimilar metals’ welding methods and mechanisms with interlayer, The International Journal of Advanced Manufacturing Technology, 102 (2019) 2845-2863.
[46] Y.-A. Shen, S.-W. Chen, H.-Z. Chen, C.-M. Chang, and Y.-H. Ouyang, Extremely thin interlayer of multi-element intermetallic compound between Sn-based solders and FeCoNiMn high-entropy alloy, Applied Surface Science, 558 (2021) 149945.
[47] G. Tiwari and R. Mehrotra. Diffusion and melting. in Defect and Diffusion Forum. 2008. Trans Tech Publ.
[48] X. Liu, B. Chen, S. Wu, Y. Ma, S. Tang, Z. Wu, Y. Huang, and W. Liu, Growth of the nano-phase intermetallic compounds and its effect on mechanical behavior of Au80Sn20/CrMnFeCoNi solder joints during isothermal aging, Journal of Alloys and Compounds, 859 (2021) 157823.
[49] 李岳翰, 高熵合金系統與無鉛銲料界面反應之評估與研究, in 化學工程研究所. 2021, 國立中正大學: 嘉義縣. p. 430.
[50] Y.-A. Shen, X.-M. Yang, C.-Y. Tsai, Y.-H. Ouyang, M.-H. Tsai, and T.-T. Shun, Effect of Cu on the interfacial reaction between Sn-based solders and FeCoNiCu alloys, Intermetallics, 144 (2022) 107530.
[51] J. Yang, L. Jiang, Z. Liu, Z. Tang, and A. Wu, Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance, Journal of Materials Science & Technology, (2021)
[52] Y.-A. Shen, H.-M. Hsieh, S.-H. Chen, J. Li, S.-W. Chen, and H. Nishikawa, Investigation of FeCoNiCu properties: Thermal stability, corrosion behavior, wettability with Sn-3.0Ag-0.5Cu and interlayer formation of multi-element intermetallic compound, Applied Surface Science, 546 (2021) 148931.
[53] H. Ma, Y. Shao, and C.H. Shek, CoCuFeNi high entropy alloy reinforced by in-situ W particles, Materials Science and Engineering: A, 797 (2020) 140218.
[54] G.-g. Meng, T. Takemoto, and H. Nishikawa, Correlations between IMC thickness and three factors in Sn-3Ag-0.5Cu alloy system, Transactions of Nonferrous Metals Society of China, 17 (2007) 686-690.
[55] https://msestudent.com/the-hume-rothery-rules-for-solid-solution/.
[56] T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, and W.W. Scott, Binary alloy phase diagrams, American society for metals Metals Park, OH, 1986.
[57] K. Terayama, K. Han, R. Katsube, I. Ohnuma, T. Abe, Y. Nose, and R. Tamura, Acceleration of phase diagram construction by machine learning incorporating Gibbs' phase rule, Scripta Materialia, 208 (2022) 114335.
[58] L.A. Dahl, Equilibrium in heterogeneous systems of two or more components, Journal of Chemical Education, 26 (1949) 411.
[59] G.P. Vassilev, K.I. Lilova, and J.C. Gachon, Calorimetric and phase diagram studies of the Co–Sn system, Intermetallics, 15 (2007) 1156-1162.
[60] K. Ishida and T. Nishizawa, The Co-Sn (Cobalt-Tin) System, Journal of Phase Equilibria, 12 (1991) 88-93.
[61] H. Okamoto, Co−Sn (Cobalt-Tin), Journal of Phase Equilibria and Diffusion, 27 (2006) 308-308.
[62] K.P. Gupta, The Co-Ni-Sn (Cobalt-Nickel-Tin) System, Journal of Phase Equilibria and Diffusion, 30 (2009) 646-650.
[63] T. Nishizawa and K. Ishida, Phase diagrams of binary nickel alloys, AS M International, Ohio, (1991) 69-74.
[64] D.E. Laughlin, Magnetic Transformations and Phase Diagrams, Metallurgical and Materials Transactions A, 50 (2019) 2555-2569.
[65] J. Huang, Z. Xiao, J. Dai, Z. Li, H. Jiang, W. Wang, and X. Zhang, Microstructure and Properties of a Novel Cu–Ni–Co–Si–Mg Alloy with Super-high Strength and Conductivity, Materials Science and Engineering: A, 744 (2019) 754-763.
[66] H. Okamoto, Co-Fe (Cobalt-Iron), Journal of Phase Equilibria and Diffusion, 29 (2008) 383-384.
[67] Z. Turgut, M.Q. Huang, K. Gallagher, M.E. McHenry, and S.A. Majetich, Magnetic evidence for structural-phase transformations in Fe-Co alloy nanocrystals produced by a carbon arc, Journal of Applied Physics, 81 (1997) 4039-4041.
[68] I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida, Phase equilibria in the Fe–Co binary system, Acta Materialia, 50 (2002) 379-393.
[69] X.Y. Lu, C.D. Cao, M. Kolbe, B. Wei, and D. Herlach, Microstructure analysis of Co-Cu alloys undercooled prior to solidification, Materials Science and Engineering A, 375-377 (2004) 1101-1104.
[70] H. Okamoto and T. Massalski, Binary alloy phase diagrams, ASM International, Materials Park, OH, USA, (1990)
[71] P. Priputen, M. Drienovský, P. Noga, M. Kusý, I. Černičková, and J. Janovec, Isothermal section of Ga-Co-Cu phase diagram at 830 °C and its peculiarities, Journal of Alloys and Compounds, 785 (2019) 1173-1179.
[72] M.A. Turchanin and P.G. Agraval, Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper-cobalt system, Powder Metallurgy and Metal Ceramics, 46 (2007) 77-89.
[73] M.A. Turchanin, P.G. Agraval, and I.V. Nikolaenko, Thermodynamics of alloys and phase equilibria in the copper-iron system, Journal of Phase Equilibria, 24 (2003) 307-319.
[74] L.A. Dreval, M.A. Turchanin, and P.G. Agraval, Thermodynamic assessment of the Cu–Fe–Ni system, Journal of Alloys and Compounds, 587 (2014) 533-543.
[75] Y. Chen, F. Liu, G. Yang, X.Q. Xu, and Y.H. Zhou, Rapid solidification of bulk undercooled hypoperitectic Fe–Cu alloy, Journal of Alloys and Compounds, 427 (2007)
[76] M.M. Fernandez, R.J.C. Malifer, and E.A. Gonzales. Leadframe alloys Cu-Fe-P and Cu-Cr as an alternative to Cu-Zr for wheel-speed magnetic sensor package. IEEE.
[77] H. Fernee, J. Nairn, and A. Atrens, Precipitation hardening of Cu-Fe-Cr alloys: Part I mechanical and electrical properties, Journal of Materials Science, 36 (2001) 2711-2719.
[78] D. Minić, M. Premović, V. Ćosović, D. Manasijević, L. Nedeljkovic, and D. Živković, Experimental investigation and thermodynamic calculations of the Cu–In–Ni phase diagram, Journal of Alloys and Compounds, 617 (2014) 379-388.
[79] G.-J. Lee, J.-H. Lee, D. Lee, K.-I. Park, C.K. Jeong, J.-J. Park, and M.-K. Lee, Synthesis and characterization of carbon-coated Cu-Ni alloy nanoparticles and their application in conductive films, Applied Surface Science, 566 (2021) 150672.
[80] H. Fu, J. Li, and X. Yun, Role of solidification texture on hot deformation behavior of a Cu–Ni–Si alloy with columnar grains, Materials Science and Engineering: A, 824 (2021) 141862.
[81] N. Saunders and A.P. Miodownik, The Cu-Sn (Copper-Tin) system, Bulletin of Alloy Phase Diagrams, 11 (1990) 278-287.
[82] G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, The Fe–Ni system: Thermodynamic modelling assisted by atomistic calculations, Intermetallics, 18 (2010) 1148-1162.
[83] J. Kim, Y. Baek, W. Choi, and K. Bok, Iron-42 wt pct nickel lead frame with palladium-electroplated multi-layer for semiconductor packages, Plating and surface finishing, 86 (1999) 113-116.
[84] K.C.H. Kumar, P. Wollants, and L. Delaey, Thermodynamic evaluation of Fe-Sn phase diagram, Calphad, 20 (1996) 139-149.
[85] V. Baheti and A. Paul, Diffusion–controlled growth of phases in metal–tin systems related to microelectronics packaging. 2017.
[86] P. Peng, A. Zhang, J. Yue, S. Li, W. Zheng, and L. Lu, Investigation on peritectic solidification in Sn-Ni peritectic alloys through in-situ observation, Journal of Materials Science & Technology, 90 (2021) 236-242.
[87] X. Bi, X. Hu, X. Jiang, and Q. Li, Effect of Cu additions on mechanical properties of Ni3Sn4-based intermetallic compounds: First-principles calculations and nano-indentation measurements, Vacuum, 164 (2019) 7-14.
[88] J. Kim, D.-Y. Park, B. Ahn, J. Bang, M.-S. Kim, H.-S. Park, Y. Sohn, and Y.-H. Ko, Effective (Pd,Ni)Sn4 diffusion barrier to suppress brittle fracture at Sn-58Bi-xAg solder joint with Ni(P)/Pd(P)/Au metallization pad, Microelectronics Reliability, 129 (2022) 114472.

QR CODE