簡易檢索 / 詳目顯示

研究生: 袁知賢
Chih-Hsien Yuan
論文名稱: 高效率小分子雙載子極性傳輸材料於單層濕式製程有機發光二極體之應用與研究
High-performance Small Molecular Host for Solution-processed Single layer Blue Phosphorescent Organic Light Emitting Diodes
指導教授: 李志堅
Chih-Chien Lee
口試委員: 范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 有機發光二極體濕式製程小分子雙載子
外文關鍵詞: Organic light emitting diodes, Solution-process, Small molecule, Bipolar
相關次數: 點閱:237下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以Bis(3,5-di(9H-carbazol-9-yl) phenyl)diphenylsilane,SimCP2作為主體材料,以濕式製程製作單層高效率藍光OLED元件。由於SimCP2具備雙載子傳輸特性,與傳統使用之高分子材料Poly(9-vinylcarbazole) PVK作為電洞傳輸材料於電性表現上不同,當
電子傳輸材料2,2’-(1,3-phenylene)bis(5-[4-(1,1-dimethylethyl)phenyl],(OXD-7)之混合比例上升,SimCP2元件電性隨之退減,顯示其高載子遷移率(m=10-4~10-3 cm2V-1s-1)足可獲得優良電性,但由於陰極修飾所提供之電子注入效果並未足以克服SimCP2之LOMO能階與電極間障礙,因此仍需以SimCP2與OXD-7混合製作單層元件發光層,但SimCP2為目前少數可以濕式製程背景製作之小分子材料,此元件效率為目前已發表之小分子單層元件結構中最高者。
與高分子元件PVK相比較下,由實驗結果顯示,在薄膜沉積表面、PL量子效率、放射與吸收頻譜、能階差異及電性比較上,皆較為優良。同時也以變角度量測,確實存在由於偶極方向分佈差異性,造成小分子系統與高分子材料間出光型式差異。


In this study, Bis(3,5-di(9H-carbazol-9-yl) phenyl)diphenylsilane(SimCP2) were fabricated as a host of emitting layer in single layer blue phosphorescent organic light emitting diodes by solution process.
The introduction of 2,2’-(1,3-phenylene)bis(5-[4-(1,1-dimethylethyl)phenyl](OXD-7) as an electron injection moiety into the LEP for device leads to the decrease of current density, which is resulted from the SimCP2 performance of bipolar transport and high mobility. On small molecule base, high efficiency is able to be achieved when the electron injection surmounts the barrier of LUMO.
Compared with Poly(9-vinylcarbazole)(PVK), SimCP2 possesses superior properties of thin film surface morphology, PL quantum efficiency, and spectron overlap.
The results reveal that light out-coupling model is distinct under the conditions of polymer and small molecule. In conclusion, ultimate enhancement of co-host device performance was related to charge balance condition and inner quantum efficiency.

致謝.................................................. I 摘要.................................................II Abstract.............................................III 總目錄...............................................IV 圖目錄................................................VI 表目錄................................................IX 第一章 緒論…………………………………………………………1 1-1 前言……………………………………………………………1 1-2 發展簡介…………………………………………………3 1-3 有機電激發光元件結構與發光機制…………………………5 1-4 濕式製程背景 …………………………………………………10 1-5 濕式製程藍色單層OLED元件…………………………………13 1-6 研究動機………………………………………………21 第二章 原理簡介……………………………………………………23 2-1 有機半導體理論簡介…………………………………………23 2-2 能量轉移機制…………………………………………………26 2-3 內外部量子效率………………………………………………27 2-4 微共振腔效應………………………………………………28 第三章 實驗儀器及步驟…………………………………………30 3-1 實驗材料…………………………………………………30 3-2 製程及量測儀器…………………………………………30 3-3 元件製作流程……………………………….……………………35 第四章 結果與討論….………………………………………………39 4-1 小分子雙載子極性傳輸材料應用於濕式製程單層結構元件…39 4-2 混合雙主體材料製作高效率濕式製程單層結構元件…………42 4-3 表面形貌與能階差異……………………………………………44 4-4 能量傳遞與量子效率……………………………………………48 4-5 外部出光………………………………………………………53 第五章 結論…………………………………………………………63 第六章 未來工作………………………………………………………64 參考文獻 ………………………………………………………65

1 S. R. Forrest, Nature 428, 911 (2004).
2 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998).
3 G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992).
4 D. H. Zhang, K. Ryu, X. L. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. W. Zhou, Nano Letters 6, 1880 (2006).
5 M. Pope, P. Magnante, and H. P. Kallmann, J. Chem. Phys. 38, 2042 (1963).
6 C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
7 C. W. Tang, S. A. Vanslyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
8 C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000).
9 D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 74, 442 (1999).
10 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
11 N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature 365, 628 (1993).
12 Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys. 77, 694 (1995).
13 A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed. 37, 402 (1998).
14 M. K. Mathai, V. E. Choong, S. A. Choulis, B. Krummacher, and F. So, Appl. Phys. Lett. 88, 243512 (2006).
15 T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, J. Appl. Phys. 96, 6016 (2004).
16 Z. X. Wu, L. D. Wang, G. T. Lei, and Y. Qiu, J. Appl. Phys. 97, 103105 (2005).
17 L. D. Hou, L. Duan, J. Qiao, W. Li, D. Q. Zhang, and Y. Qiu, Appl. Phys. Lett. 92, 263301 (2008).
18 X. H. Yang, F. Jaiser, S. Klinger, and D. Neher, Appl. Phys. Lett. 88, 021107 (2006).
19 G. G. Malliaras and J. C. Scott, J. Appl. Phys. 83, 5399 (1998).
20 M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, Appl. Phys. Lett. 79, 156 (2001).
21 C. C. Hsiao, A. E. Hsiao, and S. A. Chen, Advanced Materials 20, 1982 (2008).
22 M. T. Wu, S. J. Yeh, C. T. Chen, H. Murayama, T. Tsuboi, W. S. Li, I. Chao, S. W. Liu, and J. K. Wang, Adv. Funct. Mater. 17, 1887 (2007).
23 T. Tsuboi, S. W. Liu, M. F. Wu, and C. T. Chen, Org. Electron. 10, 1372 (2009).
24 J. S. Huang, Z. Xu, and Y. Yang, Adv. Funct. Mater. 17, 1966 (2007).
25 A. Nakamura, T. Tada, M. Mizukami, and S. Yagyu, Appl. Phys. Lett. 84, 130 (2004).
26 R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, Appl. Phys. Lett. 69, 1997 (1996).
27 M. H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, Appl. Phys. Lett. 81, 3921 (2002).
28 C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett. 83, 5127 (2003).
29 Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Phys. Rev. Lett. 96, 017404 (2006).
30 W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, and J. H. Kwon, Org. Electron. 10, 240 (2009).
31 B. Krummacher, M. K. Mathai, V. E. Choong, S. A. Choulis, F. So, and A. Winnacker, Org. Electron. 7, 313 (2006).
32 S. W. Liu, J. H. Lee, C. C. Lee, C. T. Chen, and J. K. Wanga, Appl. Phys. Lett. 91, 142106 (2007).
33 S. W. Liu, C. C. Lee, C. H. Wang, J. H. Lee, C. T. Chen, and J. K. Wang, Chem. Phys. Lett. 474, 207 (2009).
34 M. A. Baldo and S. R. Forrest, Physical Review B 64, 085201 (2001).
35 B. K. Crone, I. H. Campbell, P. S. Davids, and D. L. Smith, Appl. Phys. Lett. 73, 3162 (1998).
36 C. Wu, P. I. Djurovich, and M. E. Thompson, Adv. Funct. Mater. 19, 3157 (2009).
37 B. Park, M. Y. Han, and S. S. Oh, Appl. Phys. Lett. 93, 093302 (2008).
38 M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature 409, 494 (2001).
39 Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys. 92, 87 (2002).
40 K. M. Vaeth and C. W. Tang, J. Appl. Phys. 92, 3447 (2002).
41 J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Chem. Phys. 297, 39 (2004).
42 M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature 403, 750 (2000).
43 J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 88, 1073 (2000).

QR CODE