簡易檢索 / 詳目顯示

研究生: 陳睿麒
Ruei-Chi Chen
論文名稱: 以自組裝單分子薄膜混合氧化鋅應用於有機層疊式太陽能電池中間層之研究
Self-assembled Monolayers Mixed Zinc Oxide Interlayer for Organic Tandem Solar Cells
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 陶雨台
Yu-Tai Tao
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 有機光伏元件有機層疊式太陽能電池中間層氧化鋅奈米粒子溶液製程大面積製程
外文關鍵詞: Organic photovoltaic device, Organic tandem solar cell, Interlayer, Zinc oxide, Solution process, Large-area devices
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機光伏元件具有全水溶液製程的潛力,同時易於大面積及層疊式串聯製程。本論文旨在開發雙偶極矩氧化鋅奈米粒子應用於有機層疊式太陽能電池的中間層,透過混摻自組裝單分子材料於氧化鋅奈米粒子水溶液中,藉由分子偶極矩和不同鍵結型態來達到分子偶極性梯度分布於氧化鋅奈米粒子中間層中,進而達成具雙偶極性單一中間層,且單一中間層可提供較佳的光穿透率,進而提升元件短路電流。進一步利用光致發光光譜儀分析混摻自組裝單分子材料的氧化鋅奈米粒子中存在的缺陷能階,載子可藉由缺陷能階傳遞,進而提升載子於中間層的再結合率,同時符合能帶匹配性達到完整疊加各子電池的開路電壓。此雙偶極矩單一中間層相較於翻膜製程更易於層疊式大面積元件的製備,並可取代真空製程以達全水溶液製程的目標。


    Organic photovoltaic devices have the potential of developing complete solution process which are easy to employ in scale-up and tandem devices. In this work, we develop a solution-process approach to fabricate an ambipolar interlayer for organic tandem solar cells with self-assembled molecules of material 4-(trifluoromethyl)phenylphosphonic acid (CF3BPA-SAMs) mixed in the aqueous solution with ZnO NPs. There are two promising advantages, simple procedure and cost-effective notion. The dipolar gradient is distributed over the ZnO NPs interlayer owing to the electric dipole moment and different bonding types. Using this single ambipolar interlayer provides a better light transmittance and slightly improves the short circuit current of the devices. We further utilize PL to characterize the defect levels of the CF3BPA mixed-ZnO NPs films. The carriers can transfer by these defect levels and the recombination rate can be increased because of the well-matched band alignment. Furthermore, we achieve that the open circuit voltage of two individual cells can be superimposed (Voc=1.20 V). This single interlayer is easier to fabricate the large area tandem devices than the traditional transferable method. Finally, we can attain the complete solution process goal.

    中文摘要 II Abstract III 致謝 IV 目錄 VIII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1前言 1 1-2 研究動機與目的 3 第二章 文獻回顧與理論 5 2-1 有機太陽能電池簡介 5 2-1-1 單層有機太陽能電池(Single layer organic solar cell) 7 2-1-2 雙層有機太陽能電池(Bi-layer organic solar cell) 8 2-1-3 本體異質結有機太陽能電池(Bulk heterojunction organic solar cell) 9 2-1-4 有機層疊式太陽能電池(Organic tandem solar cell) 10 2-2 大面積有機太陽能電池製程簡介 13 2-2-1 旋轉塗佈法 (Spin coating method) 13 2-2-2 刮刀塗層法 (doctor blading method) 14 2-2-3 精密狹縫式塗佈法 (Slot-die coating method) 15 2-2-4 噴墨印刷法 (Inkjet printing method) 16 2-2-5 捲對捲加工法 (roll to roll, R2R method) 17 2-3 太陽能電池之工作原理 19 2-3-1 太陽能電池基本原理 19 2-3-2 太陽能電池常見參數 23 2-3-3 太陽光光譜分析 27 2-4 氧化鋅 (Zinc oxide) 29 2-4-1 氧化鋅-晶體結構 29 2-4-2 氧化鋅-機械性質 31 2-4-3 氧化鋅-光學性質 32 2-4-4 氧化鋅-薄膜成長方式 33 2-5 自組裝單分子薄膜 (Self-assembled monolayer) 34 2-5-1 自組裝單分子薄膜簡介 34 2-5-2 自組裝單分子薄膜製作方式 36 2-5-3 自組裝單分子薄膜之應用 37 第三章 實驗設備與方法 39 3-1實驗設備與耗材 39 3-2 實驗步驟 41 3-2-1 氧化鋅奈米粒子的製備 (ZnO NPs) 41 3-2-2 混摻CF3BPA於氧化鋅奈米粒子的製備 41 3-2-3 自組裝單分子層薄膜的製備 41 3-2-4 太陽能電池元件製備 42 3-3 量測分析儀器 49 3-3-1接觸角量測儀 (Contact angle, CA) 49 3-3-2 X射線光電子光譜儀 (XPS) 49 3-3-3場發射掃描式電子顯微鏡 (FESEM) 50 3-3-4原子力顯微鏡 (AFM) 50 3-3-5紫外-可見光分光光譜儀 (UV-visible Spectrometer) 51 3-3-6光致發光光譜儀 (Photoluminescence, PL) 51 3-3-7紫外光電子能譜儀 (UPS) 51 3-3-8太陽光源模擬系統 52 第四章 實驗結果與討論 54 4-1 混摻CF3BPA之ZnO NPs的薄膜分析 55 4-2 混摻CF3BPA之ZnO NPs薄膜應用於有機太陽能單電池元件 62 4-2-1 以混摻CF3BPA之ZnO NPs薄膜應用有機太陽能單電池之電洞傳導層 62 4-2-2 混摻CF3BPA之ZnO NPs光致發光特性分析 65 4-3 混摻CF3BPA之ZnO NPs應用於層疊式太陽能電池元件 71 4-3-1 以溶劑表面處理修飾主動層表面性質 71 4-3-2 以混摻CF3BPA之ZnO NPs應用於層疊式太陽能電池之中間層 72 第五章 結論與未來展望 82 參考文獻 85

    1. Dou, L.; Chang, W.-H.; Gao, J.; Chen, C.-C.; You, J.; Yang, Y., A Selenium-Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications. Advanced Materials 2013, 25 (6), 825-831.
    2. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications 2013, 4 (1), 1446.
    3. Kouijzer, S.; Esiner, S.; Frijters, C. H.; Turbiez, M.; Wienk, M. M.; Janssen, R. A. J., Efficient Inverted Tandem Polymer Solar Cells with a Solution-Processed Recombination Layer. Advanced Energy Materials 2012, 2 (8), 945-949.
    4. Lassiter, B. E.; Zimmerman, J. D.; Panda, A.; Xiao, X.; Forrest, S. R., Tandem organic photovoltaics using both solution and vacuum deposited small molecules. Applied Physics Letters 2012, 101 (6), 063303.
    5. Yeh, P.-N.; Jen, T.-H.; Cheng, Y.-S.; Chen, S.-A., Large active area inverted tandem polymer solar cell with high performance via insertion of subnano-scale silver layer. Solar Energy Materials and Solar Cells 2014, 120, 728-734.
    6. O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
    7. Hancox, I.; Sullivan, P.; Chauhan, K. V.; Beaumont, N.; Rochford, L. A.; Hatton, R. A.; Jones, T. S., The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions. Organic Electronics 2010, 11 (12), 2019-2025.
    8. Zhao, D.; Tang, W.; Ke, L.; Tan, S. T.; Sun, X. W., Efficient Bulk Heterojunction Solar Cells with Poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-Phenyl C61 Butyric Acid Methyl Ester Blends and Their Application in Tandem Cells. ACS Applied Materials & Interfaces 2010, 2 (3), 829-837.
    9. Tsukamoto, J.; Ohigashi, H.; Matsumura, K.; Takahashi, A., A Schottky Barrier Type Solar Cell Using Polyacetylene. Japanese Journal of Applied Physics 1981, 20 (2), L127-L129.
    10. Best Research-Cell Efficiency
    https://www.nrel.gov/pv/cell-efficiency.html.
    11. Facchetti, A., Polymer Donor–Polymer Acceptor (All-Polymer) Solar Cells. Materials Today 2013, 16, 123–132.
    12. Kearns, D.; Calvin, M., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. The Journal of Chemical Physics 1958, 29 (4), 950-951.
    13. Ghosh, A. K.; Morel, D. L.; Feng, T.; Shaw, R. F.; Rowe, C. A., Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky‐barrier cells. Journal of Applied Physics 1974, 45 (1), 230-236.
    14. Glenis, S.; Tourillon, G.; Garnier, F., Influence of the doping on the photovoltaic properties of thin films of poly-3-methylthiophene. Thin Solid Films 1986, 139 (3), 221-231.
    15. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell. Applied Physics Letters 1996, 68 (22), 3120-3122.
    16. Halls, J. J. M.; Friend, R. H., The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synthetic Metals 1997, 85 (1), 1307-1308.
    17. Kennedy, R. D.; Ayzner, A. L.; Wanger, D. D.; Day, C. T.; Halim, M.; Khan, S. I.; Tolbert, S. H.; Schwartz, B. J.; Rubin, Y., Self-Assembling Fullerenes for Improved Bulk-Heterojunction Photovoltaic Devices. Journal of the American Chemical Society 2008, 130 (51), 17290-17292.
    18. Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A., Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance. Advanced Materials 2013, 25 (34), 4766-4771.
    19. Benten, H.; Mori, D.; Ohkita, H.; Ito, S., Recent research progress of polymer donor/polymer acceptor blend solar cells. Journal of Materials Chemistry A 2016, 4 (15), 5340-5365.
    20. He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y., Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells. Advanced Materials 2011, 23 (40), 4636-4643.
    21. Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S.-W.; Lai, T.-H.; Reynolds, J. R.; So, F., High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photonics 2012, 6 (2), 115-120.
    22. Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics 2009, 3 (11), 649-653.
    23. Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z. a., Tandem structure: a breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustainable Energy & Fuels 2019, 3 (4), 910-934.
    24. Hiramoto, M.; Suezaki, M.; Yokoyama, M., Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell. Chemistry Letters 1990, 19 (3), 327-330.
    25. Liu, Y.; Cheng, P.; Yuan, J.; Huang, T.; Wang, R.; Meng, D.; Ndefru, B.; Zou, Y.; Sun, B.; Yang, Y., Enabling Efficient Tandem Organic Photovoltaics with High Fill Factor via Reduced Charge Recombination. ACS Energy Letters 2019, 4 (7), 1535-1540.
    26. Cheng, P.; Wang, J.; Zhan, X.; Yang, Y., Constructing High-Performance Organic Photovoltaics via Emerging Non-Fullerene Acceptors and Tandem-Junction Structure. Advanced Energy Materials 2020, 10 (21), 2000746.
    27. Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J., Organic tandem solar cells: A review. Energy & Environmental Science 2009, 2 (4), 347-363.
    28. Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M., Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials 2016, 4 (9), 091508.
    29. Mallajosyula, A. T.; Fernando, K.; Bhatt, S.; Singh, A.; Alphenaar, B. W.; Blancon, J.-C.; Nie, W.; Gupta, G.; Mohite, A. D., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today 2016, 3, 96-102.
    30. Kim, J. H.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Jen, A. K. Y., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials 2015, 5 (4), 1401229.
    31. Zhao, Y.; Wang, G.; Wang, Y.; Xiao, T.; Adil, M. A.; Lu, G.; Zhang, J.; Wei, Z., A Sequential Slot-Die Coated Ternary System Enables Efficient Flexible Organic Solar Cells. Solar RRL 2019, 3 (3), 1800333.
    32. Wei, Z.; Chen, H.; Yan, K.; Yang, S., Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells. Angewandte Chemie International Edition 2014, 53 (48), 13239-13243.
    33. Peng, X.; Yuan, J.; Shen, S.; Gao, M.; Chesman, A. S. R.; Yin, H.; Cheng, J.; Zhang, Q.; Angmo, D., Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials 2017, 27 (41), 1703704.
    34. Gertsen, A. S.; Castro, M. F.; Søndergaard, R. R.; Andreasen, J. W., Scalable fabrication of organic solar cells based on non-fullerene acceptors. Flexible and Printed Electronics 2020, 5 (1), 014004.
    35. Hyperphysics. The PN Junction. Department of physics and Astronomy, Georgia State University, 2017.
    36. Visser, A. J. W. G.; Rolinski, O. J., Basic Photophysics. Photobiological Sciences Online 2010.
    37. Aboulhassan, A.; Sicat, R.; Baum, D.; Wodo, O.; Hadwiger, M., Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies. Computer Graphics Forum 2017, 36 (3), 329-339.
    38. Lineykin, S.; Averbukh, M.; Kuperman, A., An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel. Renewable and Sustainable Energy Reviews 2014, 30, 282-289.
    39. Ranabhat, K.; Patrikeev, L.; Revina, A.; Andrianov, K.; Lapshinsky, V.; Sofronova, E., An introduction to solar cell technology. 2016, 14, 481-491.
    40. Enlitech. Definition of Air Mass(AM)
    https://zh-tw.enlitechnology.com/show/air-mass-am1-5g-am1-5d-306249.htm.
    41. Yearian, H. J., Intensity of Diffraction of Electrons by ZnO. Physical Review 1935, 48 (7), 631-639.
    42. Ellmer, K., Transparent Conductive Zinc Oxide and Its Derivatives. In Handbook of Transparent Conductors, Ginley, D. S., Ed. Springer US: Boston, MA, 2011; pp 193-263.
    43. Adesina Adegoke, K.; Iqbal, M.; Louis, H.; Jan, S.; Anam, M.; Bello, O., Photocatalytic Conversion of CO2Using ZnOSemiconductor by Hydrothermal Method. Pakistan Journal of Analytical & Environmental Chemistry 2018, 19, 1-27.
    44. Coleman, V.; Bradby, J.; Jagadish, C.; Munroe, P.; Heo, Y. W.; Pearton, S.; Norton, D.; Inoue, M.; Yano, M., Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Applied Physics Letters 2005, 86, 203105-203105.
    45. Coleman, V. A.; Jagadish, C., Chapter 1 - Basic Properties and Applications of ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructures, Jagadish, C.; Pearton, S., Eds. Elsevier Science Ltd: Oxford, 2006; pp 1-20.
    46. Coleman, V. A.; Bradby, J. E.; Jagadish, C.; Munroe, P.; Heo, Y. W.; Pearton, S. J.; Norton, D. P.; Inoue, M.; Yano, M., Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Applied Physics Letters 2005, 86 (20), 203105.
    47. Guo, M.; Diao, P.; Cai, S., Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry 2005, 178 (6), 1864-1873.
    48. Boer, B.; Hadipour, A.; Mandoc, M.; van Woudenbergh, T.; Blom, P., Tuning of Metal Work Functions with Self-Assembled Monolayers. Advanced Materials 2005, 17.
    49. Sun, Y.; George Ndifor-Angwafor, N.; Jason Riley, D.; Ashfold, M. N. R., Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters 2006, 431 (4), 352-357.
    50. Meng, X. Q.; Shen, D. Z.; Zhang, J. Y.; Zhao, D. X.; Lu, Y. M.; Dong, L.; Zhang, Z. Z.; Liu, Y. C.; Fan, X. W., The structural and optical properties of ZnO nanorod arrays. Solid State Communications 2005, 135 (3), 179-182.
    51. Chen, Y. Q.; Jiang, J.; He, Z. Y.; Su, Y.; Cai, D.; Chen, L., Growth mechanism and characterization of ZnO microbelts and self-assembled microcombs. Materials Letters 2005, 59 (26), 3280-3283.
    52. Wang, R.-C.; Liu, C.-P.; Huang, J.-L.; Chen, S.-J., ZnO symmetric nanosheets integrated with nanowalls. Applied Physics Letters 2005, 87 (5), 053103.
    53. Yang, Q.; Tang, K.; Zuo, J.; Qian, Y., Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route. Applied Physics A 2004, 79 (8), 1847-1851.
    54. Liu, X.; Wu, X.; Cao, H.; Chang, R. P. H., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 2004, 95 (6), 3141-3147.
    55. Djurišić, A. B.; Leung, Y. H., Optical Properties of ZnO Nanostructures. Small 2006, 2 (8‐9), 944-961.
    56. Iannaccone, G.; Bernardi, A.; Suriano, R.; Bianchi, C. L.; Levi, M.; Turri, S.; Griffini, G., The role of sol–gel chemistry in the low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance. RSC Advances 2016, 6 (52), 46915-46924.
    57. Ulman, A., PART THREE - SELF–ASSEMBLED MONOLAYERS. In An Introduction to Ultrathin Organic Films, Ulman, A., Ed. Academic Press: San Diego, 1991; pp 237-304.
    58. Khodabakhsh, S.; Sanderson, B. M.; Nelson, J.; Jones, T. S., Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells. Advanced Functional Materials 2006, 16 (1), 95-100.
    59. Kim, J. S.; Park, J. H.; Lee, J. H.; Jo, J.; Kim, D.-Y.; Cho, K., Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Applied Physics Letters 2007, 91 (11), 112111.
    60. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
    61. Campbell, I. H.; Hagler, T. W.; Smith, D. L.; Ferraris, J. P., Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metal/Polymer/Metal Structures. Physical Review Letters 1996, 76 (11), 1900-1903.
    62. Ian, D. P. In Carrier tunneling and device characteristics in polymer light-emitting diodes, Proc.SPIE, 1994.
    63. de Boer, B.; Hadipour, A.; Mandoc, M. M.; van Woudenbergh, T.; Blom, P. W. M., Tuning of Metal Work Functions with Self-Assembled Monolayers. Advanced Materials 2005, 17 (5), 621-625.
    64. Yun, M. H.; Kim, G.-H.; Yang, C.; Kim, J. Y., Towards optimization of P3HT:bisPCBM composites for highly efficient polymer solar cells. Journal of Materials Chemistry 2010, 20 (36), 7710-7714.
    65. Yeh, P.-N.; Liao, S.-H.; Li, Y.-L.; Syue, H.-R.; Chen, S.-A., Large active area inverted tandem polymer solar cell with high performance via alcohol treatment on the surface of bottom active layer P3HT:ICBA. Solar Energy Materials and Solar Cells 2014, 128, 240-247.
    66. Chi, C.-Y.; Shih, C.-H.; Sauter, E.; Das, S.; Liang, Y.-H.; Lien, H.-T.; Chang, S.-T.; Zharnikov, M.; Tai, Y., ZnO as effective hole transport layer for water resistant organic solar cells. Journal of Materials Chemistry A 2018, 6.
    67. Korin, E.; Froumin, N.; Cohen, S., Surface Analysis of Nanocomplexes by X-ray Photoelectron Spectroscopy (XPS). ACS Biomaterials Science & Engineering 2017, 3 (6), 882-889.
    68. Zeininger, L.; Portilla, L.; Halik, M.; Hirsch, A., Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles. Chemistry – A European Journal 2016, 22 (38), 13506-13512.
    69. Paniagua, S. A.; Giordano, A. J.; Smith, O. N. L.; Barlow, S.; Li, H.; Armstrong, N. R.; Pemberton, J. E.; Brédas, J.-L.; Ginger, D.; Marder, S. R., Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chemical Reviews 2016, 116 (12), 7117-7158.
    70. Polydorou, E.; Zeniou, A.; Tsikritzis, D.; Soultati, A.; Sakellis, I.; Gardelis, S.; Papadopoulos, T. A.; Briscoe, J.; Palilis, L. C.; Kennou, S.; Gogolides, E.; Argitis, P.; Davazoglou, D.; Vasilopoulou, M., Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. Journal of Materials Chemistry A 2016, 4 (30), 11844-11858.
    71. Yeh, P.-N.; Liao, S.-H.; Yi-Lun, L.; Syue, H.-R.; Chen, S.-A., Large active area inverted tandem polymer solar cell with high performance via alcohol treatment on the surface of bottom active layer P3HT:ICBA. Solar Energy Materials and Solar Cells 2014, 128, 240–247.
    72. Viezbicke, B. D.; Patel, S.; Davis, B. E.; Birnie Iii, D. P., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 2015, 252 (8), 1700-1710.
    73. Schmitt, C. In Surface modification of oxide nanoparticles using phosphonic acids : characterization, surface dynamics, and dispersion in sols and nanocomposites, 2015.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2089/08/26 (校外網路)
    全文公開日期 2089/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE