簡易檢索 / 詳目顯示

研究生: 蕭宇皓
Yu-Hao Hsiao
論文名稱: 新式三維主動式發光二極體畫素電路應用於補償驅動電晶體之電特性不均勻及有機發光二極體之電特性衰退
Novel Pixel Circuit Design for Compensating the Nonuniform and degraded electrical characteristics of driving TFT and OLED in 3D AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
Ching-Lin Fan
李志堅
Chih-Chien Lee
顏文正
Wen-Cheng Yen
陳威州
Wei-Chou Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 84
中文關鍵詞: 主動式有機發光二極體畫素電路低溫多晶矽有機發光二極體
外文關鍵詞: AMOLED, Pixel circuit, LTPS, OLED
相關次數: 點閱:420下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾年,人們對於可撓式顯示器的要求增加,促使顯示器在不同的形態
    上有了相當多的研究,例如彎曲型、可彎型、捲曲型和可折型,而大部分的研究都
    顯示AMOLED 對於實現可撓式結構是最具有潛力與前瞻性的,AMOLED 憑著其
    自發光的特性、輕薄結構、低功耗、反應時間快、高對比及廣色域已經可以與發展
    成熟的TFT-LCD 相比擬了。而對於3D 的應用上,AMOLED 不會因為液晶旋轉延
    遲而導致漏光進而影響畫面品質。然而,由於OLED 是一電流驅動元件而其電流
    是由電源線以及背板所產生的,因此在經過長時間的操作下,畫面是否能維持正常
    全都取決於驅動電流的精準度。相反的,要是能夠使用具有高度電流驅動能力的技
    術,便能挖掘出更多AMOLED 的應用範圍,在許多的背板技術中,低溫多晶矽
    (LTPS)所製成的薄膜電晶體便具有高載子飄移率,使得顯示器的解析度以及開
    口率都能一併提升。在第一個畫素電路中,我們提出一個以低溫多晶矽(LTPS)
    組成的5T2C 畫素電路,其特點是能透過畫素內部電壓負回饋的機制而獲得額外電
    流平衡有機發光二極體衰退帶來的發光電流減少以及導線內部寄生電阻產生的壓
    降,另外,模擬結果顯示,在薄膜電晶體的臨界電壓飄移正負0.5V時,此電路的
    電流錯誤率僅有0.615%。
    雖然低溫多晶矽(LTPS)有諸多上述的優點,但其實際製程上,由於需要準
    分子雷射技術的設備以及雷射處理不均勻的特性導致電晶體的電特性不一致。最
    近,許多研究指出氧化銦鎵鋅(IGZO)有不錯的電特性、大面積製程上較為均勻
    以及製程成本較低的優點,使其在顯示器技術上有相當的優勢。但對於實際的
    AMOLED 顯示器上,除了電晶體的電特性飄移之外,有機發光二極體的衰退以及
    iii
    寄生電阻和寄生電容帶來的影響也需要在我們設計畫素電路時一併考慮。因此,考
    慮上述問題後,我們從實驗室所得的氧化銦鎵鋅(IGZO)數據中先建立了一個
    model 並提出第二個畫素電路是以氧化銦鎵鋅(IGZO)為電晶體的補償電路,其
    特點為第一個不藉由外部電路就能進行全面性補償的電路並提供逆偏壓延長有機
    發光二極體的壽命。此外,此電路也適用於氧化銦鎵鋅normally-on 的電晶體特性,
    根據模擬結果,在電晶體的臨界偏壓飄移正負1V時,電流的錯誤率僅0.5%。
    第三個電路我們特別針對大尺寸顯示器的需求進行設計,除了使用適合大尺
    寸的氧化銦鎵鋅(IGZO)技術外,我們讓上下兩個有機發光二極體共用一個驅動
    電路,達到2.5T1C 的極簡結構,並且利用各自的發光時間對另一個有機發光二極
    體進行逆偏壓的操作而不發光時間也有部分階段同樣也操作在逆偏壓的情況,使
    得延長有機發光二極體的效果在理論上有相當的效果,此外,在實際應對RGB
    三種不同的有機發光二極體時,可直接藉由設計其電容值而限定流經的發光電流。
    模擬結果顯示,在電晶體的臨界電壓飄移正負1V 時,其電流錯誤率僅0.71%。在
    考慮資料線與掃描線之電阻與電容造成的延遲效應,我們以一個30吋的面板為
    例,分析面板四個角落的電流誤差均小於1.5%。
    為了能實現高解析度並且具有3D 功能的顯示器,以上3個新型電路都藉由同
    步發光(SE)的方式進行發光,並且在灰階寫入階段時,每一條掃描線的寫入時間
    都只需要3.5 微秒。最後,藉由電路模擬結果的印證並將其與過去期刊上的畫素電
    路作比較,顯示出設計的電路有著顯著的特性。


    In the last few years, the increasing demand of flexible display has boosted large
    amount of research and development in various types of flexible displays, including
    curved, bendable, rollable and foldable. Most previous studies have indicated that active
    matrix organic light-emitting Diode (AMOLED) is the most potential and promising
    technology to realize flexible display. In addition, the advantages of AMOLED displays
    such as the nature of self-emission, thin structure, low power consumption, short response
    time, high contrast and wide color gamut all make it comparable with the mature TFTLCD.
    Compared with TFT-LCD, there is no light leakage occurred in AMOLED which
    caused by the slow rotation rate of liquid crystal and hence AMOLED is more suitable
    for 3D application. However, since OLED is a current driving device and the current is
    generated from the driving TFT and power line, the sensitivity of current determines the
    image quality under the long-term operation. Otherwise, if a high current driving ability
    technology is applied on AMOLED, which would release the overall potential of
    AMOLED to make a significant applications. Among the technologies of backplane,
    Low-temperature polycrystalline-silicon (LTPS) thin-film transistors (TFTs) shows
    which has high mobility to increase the aperture rate and enable a higher resolution
    display. Therefore, in the first circuit, we proposed a high speed 5T2C pixel circuit based
    on LTPS-TFT, which has the strong immunity to the variation of driving TFT VTH and
    provides extra current, generated from circuit design, to cancel the current variation
    caused by raised VTH_OLED and power dissipation of wires.
    Unfortunately, applying in actual pixel design, the distinct fabrication of LTPS-TFTs
    lead to the electrical mismatch and the fabrication investment on excimer laser annealing
    v
    (ELA) raise the cost of a display. Recently, many researches revealed that a-IGZO TFT
    seems to a good candidate for AMOLED in large-sized displays owning to its satisfy
    electrical characteristics, uniformity in large area and low fabrication cost. For a real
    display, there exist some other issues such as OLED degradation and IR drop. None of
    paper reported can comprehensively compensate for the issues of displays by voltage
    programming pixel circuit. Therefore, in the thesis, we build a model of a-IGZO TFT for
    SPICE which was fabricated from our lab at first. In the second pixel circuit, it is
    composed of 4T2C based on a- IGZO TFT. It can not only successfully detect the VTH of
    normally-on and normally-off TFT, but apply reverse bias on OLED. Furthermore, the
    variation of mobility is also compensated. According to the simulation results, the average
    current error rates are only 0.5% (ΔVTH =±1V) and below 1% (ΔVTH_OLED = +0.5V,
    ΔVDD= -0.5V). For the pursuit of low power consumption and large aperture rate for
    bottom emission, the last pixel circuit is equivalent to 2.5T1C based on a-IGZO TFT.
    According to the simulation for 30 inch display, the results show the high instability at
    the four corners error rate which demonstrate the pixel circuit suitable for large-sized
    display. And the AC power line provide reverse bias on OLED for a half of duty cycle
    which effectively alleviate the current stress on OLED and prolong the lifetime of OLED.
    The last pixel circuit has high instability of current which is demonstrated by average
    current error rates of 0.71% (ΔVTH =±1V), 0.82% (ΔVTH_OLED = +0.5V) and 0.92%
    (ΔVDD= -0.5V).
    In our research, we successfully proposed three pixel circuits which are quite suitable
    for the large-sized displays. Among them, each pixel circuits possess individual specialty
    for distinct displays. Overall, all of them were verified by SPICE and compared with other
    pixel circuits from presented paper.

    Acknowledgement (in Chinese) ...................................................................................... i Abstract (in Chinese) ...................................................................................................... ii Abstract .......................................................................................................................... iv Contents .......................................................................................................................... vi List of Figures ................................................................................................................ ix List of Tables ................................................................................................................. xii Chapter 1 Introduction .............................................................................................. 1 1.1 Evolution and Classification of FPD ........................................................... 1 1.2 OLED Structure and Operation .................................................................. 3 1.2.1 Mechanism of OLED Emission .......................................................... 4 1.2.2 PMOLED ............................................................................................. 6 1.2.3 AMOLED ............................................................................................. 7 1.3 Three-dimension Displays ............................................................................ 8 1.3.1 Overview of 3D Technology ................................................................ 8 1.3.2 Stereoscopic Displays .......................................................................... 9 1.3.3 Emission Driving Scheme ................................................................. 10 1.4 Motivation ................................................................................................... 12 Chapter 2 AMOLED Pixel Circuit Driving Method ............................................ 14 2.1 Driving Device ............................................................................................. 14 2.1.1 ?-Si TFT ............................................................................................. 14 2.1.2 LTPS TFT .......................................................................................... 15 vii 2.1.3 ?-IGZO TFT ...................................................................................... 15 2.2 TFT Model Fitting Flow ............................................................................. 16 2.3 Compensation for AMOLED ..................................................................... 20 2.3.1 Threshold Voltage .............................................................................. 22 2.3.2 Mobility .............................................................................................. 23 2.3.3 OLED Degradation ........................................................................... 24 2.3.4 Voltage Drop of the Power Line ....................................................... 26 Chapter 3 A Novel High Speed Pixel Circuit with Extra Current Compensation for OLED Degradation and IR Drop in Large size AMOLED .......... 27 3.1 Introduction ................................................................................................. 27 3.2 Circuit Scheme and Operation .................................................................. 28 3.3 Simulation Results and Discussion ............................................................ 32 3.4 Summary ..................................................................................................... 39 Chapter 4 A Novel Voltage-programming ?-IGZO TFT Pixel Circuit with Comprehensive Compensation ............................................................. 41 4.1 Introduction ................................................................................................. 41 4.2 Circuit Scheme and Operation .................................................................. 42 4.3 Simulation Results and Discussion ............................................................ 46 4.4 Summary ..................................................................................................... 54 Chapter 5 A Novel 2.5T1C Pixel Circuit Using Reverse Bias to Alleviate OLED Degradation with ?-IGZO TFTs for AMOLED Displays .................. 55 5.1 Introduction ................................................................................................. 55 5.2 Circuit Scheme and Operation .................................................................. 57 5.3 Simulation Results and Discussion ............................................................ 63 5.4 Summary ..................................................................................................... 70 viii Chapter 6 Future Work ........................................................................................... 72 6.1 Conclusion ................................................................................................... 72 6.2 Future Work ................................................................................................ 73 REFERENCE ................................................................................................................ 74

    [1] G. Shapiro, "Consumer electronics association's five technology trends to watch:
    exploring new tech that will impact our lives, " IEEE Consumer Electronics
    Magazine, vol. 2, no. 1, pp. 32–35, Jan. 2013.
    [2] R. Mertens, The OLED Handbook A Guide to OLED Technology, Industry &
    Market, 2013.
    [3] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied
    Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
    [4] A. Ko¨hler and H. Ba¨ssler, Electronic Processes in Organic Semiconductors: An
    Introduction, John Wiley & Sons, 2015.
    [5] F. Templier, OLED Microdisplays, 2014, pp. 124-125.
    [6] Brian Bowers, Sir Charles Wheatstone FRS: 1802–1875 (2nd ed.), IET, 2001, pp.
    207–208. ISBN 978-0-85296-103-2.
    [7] David Sir Brewster, The Stereoscope; its History, Theory, and Construction, with
    its Application to the fine and useful Arts and to Education: With fifty wood
    Engravings, 1856
    [8] N. S. Holliman , N. A. Dodgson, G. E. Favalora and L. Pockett, "Three-
    Dimensional Displays: A Review and Applications Analysis," IEEE Transactions
    on Broadcasting, vol.57, no. 2, pp. 362-371, Apr 2011.
    [9] H. Urey , K. V. Chellappan, E. Erden and P. Surman, "State of the Art in
    Stereoscopic and Autostereoscopic Displays," Proceedings of the IEEE, vol. 99,
    no. 4, pp. 540-555, Apr 2011.
    [10] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen and
    B. Lee, "Three-dimensional display technologies of recent interest Principles,
    75
    status, and issues," Applied Optics, vol. 50, no. 34, pp. 87-115, 2011.
    [11] E. Lueder, 3D Displays, 2012, pp. 22-25.
    [12] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. D. Shin, J. D. Lee, B. H. Kim, B. H.
    Berkeley and S. S. Kim, "Novel Simultaneous Emission Driving Scheme for
    Crosstalk-free 3D AMOLED TV," Society for Information Display, vol. 41, no. 1,
    pp. 758-761, 2010.
    [13] L. Zhou, M. Xu, X. H. Xia, J. H. Zou, L. R. Zhang, D. X. Luo, W. J. Wu, L. Wang,
    and J. B. Peng, "Power Consumption Model for AMOLED Display Panel Based on
    2T-1C Pixel Circuit, "J. Disp. Technol.., VOL. 12, NO. 10, Oct. 2016.
    [14] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, "Comparison of a-Si and
    Poly-Si for AMOLED displays," Society for Information Display, vol. 12, no. 4,
    pp. 367-371, 2004.
    [15] Y. K. Lee, K. M. Kim, J. I. Ryu and D. J. Choo, "A comparison between a-Si : H
    TFT and poly-Si TFT for a pixel in AMOLED," Journal- Korean Physical Society,
    vol. 39, pp.S291-S295, 2001.
    [16] S. W. Lee and S. K. Joo, "Low temperature poly-si thin-film transistor fabrication
    by metal-induced lateral crystallization," IEEE Electron Device Letters, vol. 17,
    no. 4, pp.160-162, 1996.
    [17] E. Fortunato, P. Barquinha and R. Martins, "Oxide Semiconductor Thin-Film
    Transistors A Review of Recent Advances," Advanced Materials, vol. 24, no. 22,
    pp. 2945-2986, May2012.
    [18] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono,
    "Amorphous oxide semiconductors for high-performance flexible thin-film
    transistors," Japanese Journal of Applied Physics, vol. 45, no. 5 B, pp. 4303-4308,
    May 2006.
    76
    [19] T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In-Ga-Zn-O
    thinfilm transistors," Science and Technology of Advanced Materials, vol. 11, no.
    4, Aug 2010.
    [20] J. H. Lee, J. H. Kim and M. K. Han, "A new a-Si:H TFT pixel circuit compensating
    the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,"
    IEEE Electron Device Letters, vol. 26, no. 12, pp. 897-899, Dec 2005.
    [21] A. Nathan, G. R. Chaji and S. J. Ashtiani, "Driving schemes for a-Si and LTPS
    AMOLED displays," IEEE/OSA Journal of Display Technology, vol. 1, no. 2, pp.
    267-277, Dec 2005.
    [22] S. H. Jung, W. J. Nam and M. K. Han, "A new voltage-modulated AMOLED pixel
    design compensating for threshold voltage variation in Poly-Si TFTs," IEEE
    Electron Device Letters, vol. 25, no. 10, pp. 690-692, Oct 2004.
    [23] S. H. Jung, W. J. Nam and M. K. Han, "A new voltage-modulated AMOLED pixel
    design compensating for threshold voltage variation in Poly-Si TFTs," IEEE
    Electron Device Letters, vol. 25, no. 10, pp. 690-692, Oct 2004.
    [24] C. L. Lin, C. C. Hung, P. C. Lai and W. Y. Chang, "A New a-IGZO AMOLED
    Pixel Circuit Design to Improve the OLED Luminance Degradation in 3D
    Displays," Society for Information Display, vol. 44, no. 1, pp. 1107-1109, Jul 2013.
    [25] H. Jung, Y. Kim, Y. Kim, C. Chen, J. Kanicki and H. Lee, "a-IGZO TFT Based
    Pixel Circuits for AM-OLED Displays," Society for Information Display, vol. 43,
    no. 1, pp.1097-1100, Jun 2012.
    [26] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic lightemitting
    devices," IEEE Journal on Selected Topics in Quantum Electronics, vol.
    4, no. 1, pp. 83-99, Jan 1998.
    77
    [27] R. M. A. Dawson , Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G.
    Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E.
    Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu
    and J. C. Sturm, "The impact of the transient response of organic light emitting
    diodes on the design of active matrix OLED displays," International Electron
    Devices Meeting Technical Digest, pp. 875-878, 1998.
    [28] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic lightemitting
    devices," IEEE Journal on Selected Topics in Quantum Electronics, vol.
    4, no. 1, pp. 83-99, Jan 1998.
    [29] S. Ono, K. Miwa, K. Maekawa and T. Tsujimura, "VT Compensation Circuit for
    AMOLED Displays Composed of Two TFTs and One Capacitor," IEEE
    Transactions on Electron Devices, vol. 54, no. 3, pp. 462-467, Mar 2007.
    [30] C. S. Chiang, J. Kanicki and K. Takechi, "Electrical Instability of Hydrogenated
    Amorphous Silicon Thin-Film Transistors for Active-Matrix Liquid-Crystal
    Displays, "Japanese Journal of Applied Physics, vol. 37, no. 11, pp. 4704-4710,
    1998.
    [31] M. J. Powell, C. Van Berkel and J. R. Hughes, "Time and temperature dependence
    of instability mechanisms in amorphous silicon thin ‐ film transistors," Applied
    Physics Letters, vol. 54, no. 14, pp. 1323-1325, Apr 1989.
    [32] S. Sambandan and A. Nathan, "Equivalent Circuit Description of Threshold
    Voltage Shift in a-Si:H TFTs From a Probabilistic Analysis of Carrier Population
    Dynamics," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2306-2311,
    Aug 2006.
    [33] S. Sambandan and A. Nathan, "Equivalent Circuit Description of Threshold
    Voltage Shift in a-Si:H TFTs From a Probabilistic Analysis of Carrier Population
    78
    Dynamics," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2306-2311,
    Aug 2006.
    [34] C. L. Lin, F. H. Chen, Y. T. Liu, C. M. Lu, and W. L. Wu, "New Voltage-
    Programmed AMOLED Pixel Circuit Employing In-Pixel Compensation Scheme
    for Mobility Variation" SID 2016 DIGEST, pp.1254-1256.
    [35] B. Geffroy, P. le Roy and C. Prat, "Organic light-emitting diode (OLED)
    technology: materials, devices and display technologies," Polymer International,
    vol. 55, no. 6, pp.572-582, Jun 2006.
    [36] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang and J. Shi,
    "Degradation mechanisms in organic light emitting diodes," Synthetic Metals, Vols.
    111-112, pp. 233-236, Jun 2000.
    [37] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz and C. Mayr, "Device
    efficiency of organic light-emitting diodes Progress by improved light
    outcoupling," physica status solidi (a), vol. 210, no. 1, pp. 44-65, Jan 2013.
    [38] D. Zou, . M. Yahiro and T. Tsutsui, "Study on the degradation mechanism of
    organic light-emitting diodes (OLEDs)," Synthetic Metals, vol. 91, no. 1-3, pp.
    191-193, 1997.
    [39] Y. C. Lin and H. P. D. Shieh, "Improvement of brightness uniformity by AC
    driving scheme for AMOLED display," IEEE Electron Devices Society, vol. 25, no.
    11, pp. 728-730, Nov 2004.
    [40] J. P. Lee, H. S. Jeon, D. S. Moon and B. S. Bae, "Threshold voltage and ir drop
    compensation of an AMOLED pixel circuit without a VDD Line," IEEE Electron
    Devices Society, vol. 35, no. 1, pp. 72-74, Nov 2013.
    [41] C. L. Fan, M. C. Shang, W. C. Lin, H. C. CHang, K. C. Chao and B. L. Guo,
    "LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop
    79
    on the power line for AMOLED displays," Advances in Materials Science and
    Engineering, May 2012.
    [42] C. H. Oh, H. J. Shin, W. J. Nam, B. C. Ahn, S. Y. Cha and S. D. Yeo, LG Display
    Co., Ltd., Paju-si, Gyeongki-do, Korea, "Invited Paper: Technological Progress and
    Commercialization of OLED TV ," SID 2013 DIGEST, pp.239-242.
    [43] C. C.Wu, S.D.Theiss,G.Gu, M. H. Lu, J.C. Sturm, S.Wagner, and S. R. Forrest,
    "Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight
    metal foil substrates, " IEEE Electron Device Lett., vol. 18, no. 12, pp. 609–612,
    Dec. 1997.
    [44] W. J. Wu, L. Zhou, M. Xu, L. R. Zhang, R. H. Yao and J. B. Peng, "An AC Driving
    Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED
    Degradation for AMOLED," Journal of Display Technology, vol. 9, no. 7, pp. 572-
    576, Jul 2013.
    [45] C. L. Lin, C. C. Hung, P. Y. Kuo and M. H. Cheng, "New LTPS Pixel Circuit With
    AC Driving Method to Reduce OLED Degradation for 3D AMOLED Displays,"
    Journal of Display Technology, vol. 8, no. 12, pp. 681-683, Dec 2012.
    [46] K. Nomura,H. Ohta, A. Takagi, T. Kamiya,M.Hirano, and H. Hosono, "Roomtemperature
    fabrication of transparent flexible thin-film transistors using
    amorphous oxide semiconductors, " Nature, vol. 432, pp. 488–492, 2004.
    [47] T.C. Fung, K. Abe, H. Kumomi, and J. Kanicki, "Electrical instability of RF
    sputter amorphous In-Ga-Zn-O thin-film transistors, "J. Display Technol., vol. 5,
    no. 12, pp. 452–461, Dec. 2009.
    [48] Y. G. Mo et al., "Amorphous oxide TFT backplane for large size AMOLED TVs, "
    in SID Symp. Dig. Tech. Papers, May 2010, vol. 41, no. 1, pp. 1037–1040.
    [49] M. Mativenga, M. H. Choi, J. W. Choi, and J. Jang, "Transparent flexible circuits
    80
    based on amorphous–indium–gallium-zinc–oxide thinfilm transistors, " IEEE
    Electron Device Lett., vol. 32, no. 2, pp. 170–172, Feb. 2011.
    [50] K. Abe et al., "Amorphous In–Ga–Zn–O dual-gate TFTs: Current–voltage
    characteristics and electrical stress instabilities, " IEEE Trans. Electron Devices,
    vol. 59, no. 7, pp. 1920–1935, Jul. 2012.
    [51] Y. Kaneko, A. Sasano, and T. Tsukada, "Characterization of instability in
    amorphous silicon thin-film transistors, " J. Appl. Phys., vol. 69, pp. 7301–7305,
    1991.
    [52] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S.
    Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and
    H. Ohshima, "Low-temperature polysilicon thin-film transistor driving with
    integrated driver for high-resolution light emitting polymer display, " IEEE Trans.
    Electron Devices, vol. 46, no. 12, pp. 2282–2288, Dec. 1999.
    [53] Y. Morimoto, T. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, "Influence
    of grain boundaries and intragrain defects on the performance of poly-si thin film
    transistors, " J. Electrochem. Soc., vol. 144, no. 7, 1997.
    [54] C. L. Fan, F. P. Tseng, B. J. Li, Y. Z. Lin, S. J. Wang, W. D. Lee and B. R. Huang,
    "Improvement in reliability of amorphous indium-galliumzinc oxide thin-film
    transistors with Teflon/SiO, bilayer passivation under gate bias stress," Jpn. J.
    Appl. Phys., vol. 55, p. 02BC17, January 2016.
    [55] C. L. Lin, W. Y. Chang, and C. C. Hung, "Compensating pixel circuit driving
    AMOLED display with a-IGZO TFTs, " IEEE Electron Device Lett., vol. 34, no. 9,
    pp. 1166–1168, Sep. 2013.
    [56] Y. Kim, C. Chen, J. Kanicki, and H. Lee, "An a-InGaZnO TFT pixel circuit
    compensating threshold voltage and mobility variations in AMOLEDs," J. Display
    81
    Technol., VOL. 10, NO. 5, pp. 402-406, MAY 2014.
    [57] S. J. Song, H. Nam. Chaji, and S. J. Ashtiani, "In-pixel mobility compensation
    scheme for AMOLED pixel circuits, " J. Display Technol., vol. 11, no. 2, pp. 209–
    213, Feb. 2015.
    [58] H. J. In and O. K. Kwon, "External compensation of nonuniform electrical
    characteristics of thin-film transistors and degradation of OLED devices in
    AMOLED displays, " IEEE Electron Device Lett., vol. 30, no. 4, pp. 377–379,
    Apr. 2009.
    [59] H. Y. Lu, T. T. Chang, Y. H. Tai, P. T. Liu, and S. Chi, "A new pixel circuit
    compensating for brightness variation in large size and high resolution AMOLED
    displays, " J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
    [60] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai, B. R. Huang, "Novel LTPS-TFT
    pixel circuit with OLED luminance compensation for 3D AMOLED displays, " J.
    Display Technol., vol. 12, no. 5, pp. 425-428, May 2016.
    [61] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, "Improvement of pixel electrode
    circuit for active-matrix OLED by application of reversed biased voltage," IEEE
    Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 856–859, Dec. 2005.
    [62] K. Y. Lee and C. P. Chao, "A new AMOLED pixel circuit with pulsed drive and
    reverse bias to alleviate OLED degradation, " IEEE Trans. Electron Devices, vol.
    59, no. 4, pp. 1123–1130, Apr. 2012.
    [63] J. P. Lee, H. S. Jeon, D. S. Moon, and B. S. Bae, "Threshold voltage and IR drop
    compensation of an AMOLED pixel circuit without a VDD line, " IEEE Electron
    Device Lett., VOL. 35, NO. 1, pp. 72–74, Jan. 2014
    [64] Y. Kim, Y. Kim, and H. Lee, "A novel p-type LTPS TFT pixel circuit compensating
    for threshold voltage and mobility variations, " J. Display Technol., vol. 10, pp.
    82
    995–999, Dec. 2014.
    [65] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache,
    "Polysilicon VGA active matrix OLED displays—technology and performance, "
    in Proceedings of the IEEE International Electron Devices Meeting (IEDM ’98),
    (1998) 871–874.
    [66] B. T. Chen, Y. J. Kuo, C. C. Pai, C. C. Tsai, H. C. Cheng, and Y. H. Tai, "A new
    pixel circuit for driving organic light emitting diodes with low temperature
    polycrystalline thin film transistors, " in Proceedings of the International Display
    Manufacturing Conference and Exhibition (IDMC ’05), (2005) 378–381.
    [67] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S.
    Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and
    H. Ohshima, " Low-temperature polysilicon thin-film transistor driving with
    integrated driver for high-resolution light emitting polymer display, " IEEE Trans.
    Electron Devices, 46 (1999) 2282–2288.
    [68] T. F. Chen, C. F. Yeh, and J. C. Lou," Investigation of grain boundary control in the
    drain junction on laser-crystalized poly-Si thin film transistors," IEEE Electron
    Device Lett., 24 (2003) 457–459.
    [69] S. H. Jung, W. J. Nam, and M. K. Han, "A new voltage-modulated AMOLED pixel
    design compensating for threshold voltage variation in poly-Si TFTs," IEEE
    Electron Device Lett., 25 (2004) 690–692.
    [70] C. L. Lin, Y. C. Chen, " A novel LTPS-TFT pixel circuit compensating for TFT
    threshold-voltage shift and OLED degradation for AMOLED, " IEEE Electron
    Device Lett., 28 (2007) 129–131.
    [71] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, "VT compensation circuit for
    AMOLED displays composed of two TFTs and one capacitor, "IEEE Trans.
    83
    Electron Devices, 54 (2007) 462–467.
    [72] W. J. Wu, L. Zhou, R. H. Yao, and J. B. Peng, "A new voltage-programmed pixel
    circuit for enhancing the uniformity of AMOLED displays, "IEEE Electron Device
    Lett., 32 (2011) 931-933.
    [73] H. J. In and O. K. Kwon, " Novel Driving Method for Two-Dimensional and
    Three-Dimensional Switchable Active Matrix Organic Light-Emitting Diode
    Displays for Emission and Programming Time Extension, " Jpn. J. Appl. Phys., 51
    (2012) 03CD03.
    [74] J. S. Yoon, J. M. Lee, Y. H. Lee, D. H. Oh, T. G. Kim, K. H. Oh, and B.S. Kim,
    "31_inch FHD AMOLED 3-D TV using emission-switch control method", in SID
    Tech. Dig., (2011) 353–356.
    [75] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, " New LTPS pixel circuit with
    AC driving method to reduce OLED degradation for 3D AMOLED displays, " J.
    Display Technol., 8 (2012) 681–683.
    [76] S. J. Ashtiani, G. R. Chaji, and A. Nathan, "AMOLED pixel circuit with electronic
    compensation of luminance degradation", J. Display Technol., 3 (2007) 36–39.
    [77] H. J. In and O. K. Kwon, "External compensation of nonuniform electrical
    characteristics of thin-film transistors and degradation of OLED devices in
    AMOLED displays", IEEE Electron Device Lett., 30 (2009) 377–379.
    [78] Y. C. Lin and H. P. D. Shieh, "Improvement of brightness uniformity by AC
    driving scheme for AMOLED display", IEEE Electron Device Lett., 25 (2004)
    728–730.
    [79] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, "Improvement of pixel electrode
    circuit for active-matrix OLED by application of reversed-biased voltage, " IEEE
    Trans. Circuits Syst. II, Exp. Briefs, 52 (2005) 856–859.
    84
    [80] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, "Lifetime amelioration for an
    AMOLED pixel circuit by using a novel ac driving scheme, " IEEE Trans.
    Electron Devices, 58 (2011) 2652–2659.
    [81] I. Nam and D. H. Woo, Poly-Si, "Active matrix organic light-emitting diode pixel
    circuit with compensation for threshold voltage and mobility variations," IEEE
    Electronics Lett., 50 (2014) pp. 934-935.
    [82] Y. Kim, Y. Kim, and H. Lee, "A Novel p-Type LTPS TFT Pixel Circuit
    Compensating for Threshold Voltage and Mobility Variations," J. Disp. Technol.,
    10 (2014) 995-1000.
    [83] K. Y. Lee, Y. P. Hsu, and P. C. P. Chao, " A New 4T0.5C AMOLED Pixel Circuit
    with Reverse Bias to Alleviate OLED Degradation, " IEEE Electron Device Lett., 3
    (2012) 1024-1026.

    無法下載圖示 全文公開日期 2022/07/18 (校內網路)
    全文公開日期 2027/07/18 (校外網路)
    全文公開日期 2027/07/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE