簡易檢索 / 詳目顯示

研究生: 鍾育廷
Yu-ting Chung
論文名稱: 蒸鍍速率對類平面分子的有機發光二極體元件特性與壽命之研究
Effect of deposition rate on device performance and lifetime of quasi-planar molecule-based organic light-emitting diodes
指導教授: 李志堅
Chih-chien Lee
口試委員: 范慶麟
Ching-lin Fan
劉舜維
Shun-wei Liu
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 蒸鍍速率
外文關鍵詞: deposition rate
相關次數: 點閱:299下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討改變類平面分子之有機材料Bis(10-hydroxyb- enzo[h]qinolinato)beryllium (Bebq2)的沉積速率對於有機薄膜的特性造成的影響。並且將其製作成有機發光二極體元件,觀察不同的沉積速率對於元件特性以及壽命的影響,藉由實驗結果與電腦模擬元件中載子的分布情形深入探討變化原因。
    我們利用飛行時間法量測在不同的沉積速率之下,Bebq2有機薄膜的載子傳輸特性,並使用原子力顯微鏡觀察薄膜的表面形態,以及架設積分球量測系統分析薄膜的光激發光量子效率,最後使用光電特性量測系統與壽命量測系統分析元件的特性以及操作穩定度。
    根據實驗結果顯示,改變沉積速率的確會影響有機薄膜的載子遷移率,隨著沉積速率的降低,將造成Bebq2分子較為整齊的積聚排列且利於載子傳輸行為,且容易形成區域性的分子聚集現象,因此導致PL淬熄現象加劇,故擁有較低的螢光發光效率。此外,沉積速率較為緩慢的元件,將導致大量的激發子以非放光形式釋放能量,產生過多的焦耳熱,並且加速區域性的結晶化速率,使元件必須以更高的驅動電壓來維持固定的電流,因此元件的壽命將隨著Bebq2沉積速率的降低而衰退的更加急遽。


    In this thesis, we report a study of electrical and optical characteristics, surface morphology and device lifetime of quasi-planar molecule bis(10-hydroxybenzo[h]qinolinato) beryllium (Bebq2) were studied as a function of the deposition rate. These devices exhibited a significant decrease in the photoluminescence (PL) efficiency due to the formation of large aggregation in the emitting layer during a slower deposition process. Time-of-flight studies showed that the molecule-packing configuration in the ordered aggregates could enhance the probability for site-to-site hopping via intermolecular interactions.
    The effects of the deposition rate on the device performance of an organic light-emitting diode were exhaustively analysed by examining the electrical property, morphology, PL decay and device simulation. These results provide valuable insights into the effects of varying deposition rates on the electroluminescence efficiency and device reliability.
    Our study has shown that changing the deposition rate of organic films can alter the charge transport properties and the molecular radiative efficiency, and thus provides useful insights into the optimization of the OLEDs fabrication process.

    摘要..............................................................................................................I Abstract.......................................................................................................II 致謝.....................................................................................................…...III 總目錄.......................................................................................................IV 圖目錄.....................................................................................................VIII 表目錄.......................................................................................................XI 第一章 緒論 1-1 前言.............................................................................................1 1-2 有機發光二極體的發展與歷史沿革.........................................2 1-3 有機發光二極體元件的基本發光原理.....................................5 1-4 有機發光二極體元件的基本結構.............................................8 1-5 有機發光二極體元件材料介紹..............................................11 1-5-1 陽極材料........................................................................11 1-5-2 電洞注入材料................................................................12 1-5-3 電洞傳輸材料................................................................12 1-5-4 電子傳輸材料................................................................13 1-5-5 電子注入材料................................................................14 1-5-6 陰極材料........................................................................14 1-6 研究動機..................................................................................15 1-7 論文架構..................................................................................17 第二章 理論基礎 2-1 有機半導體傳輸機制..............................................................19 2-2 有機材料的吸收與放射..........................................................22 2-3 有機發光二極體的效率..........................................................24 2-4 影響有機發光二極體元件壽命的機制..................................27 第三章 實驗流程 3-1 實驗架構..................................................................................34 3-2 實驗材料..................................................................................35 3-2-1 基板................................................................................35 3-2-2 藥品................................................................................35 3-3 製程設備..................................................................................36 3-3-1 超音波清洗機................................................................36 3-3-2 加熱板............................................................................36 3-3-3 旋轉塗佈機....................................................................36 3-3-4 紫外光曝光機................................................................37 3-3-5 氧氣電漿清洗機............................................................38 3-3-6 手套箱............................................................................38 3-3-7 熱蒸鍍機........................................................................39 3-4 量測儀器..................................................................................40 3-4-1 紫外-可見光光譜儀....................................................40 3-4-2 螢光光譜儀....................................................................41 3-4-3 表面輪廓儀....................................................................41 3-4-4 光電子光譜分析儀........................................................42 3-4-5 有機電激發光元件光電特性量測系統........................44 3-4-6 飛行時間量測法............................................................44 3-4-7 原子力顯微鏡................................................................47 3-4-8 有機電激發光元件壽命量測系統................................48 3-4-9 積分球量測系統............................................................49 3-5 元件製作流程..........................................................................52 3-5-1 ITO玻璃圖案化..............................................................52 3-5-2 ITO玻璃基板前處理......................................................54 3-5-3 矽基板前處理................................................................55 3-5-4 有機材料與金屬電極蒸鍍............................................56 3-5-5 元件封裝........................................................................57 第四章 結果與討論 4-1 有機材料特性分析..................................................................59 4-2 表面型態分析..........................................................................64 4-3 螢光光譜與量子效率分析......................................................67 4-4 載子遷移率分析......................................................................69 4-5 元件B-I-V特性分析.................................................................72 4-6 元件壽命分析..........................................................................75 4-7 材料本質劣化分析..................................................................78 4-8 載子分佈行為模擬..................................................................81 第五章 結論 參考文獻...................................................................................................87

    [1]M. Pope, H. P. Kallmann, and P. J. Magnante, J. Chem. Phys. 38, 2042 (1963).
    [2]W. Helfrich and W. G. Schneidere , Phys. Rev. Lett. 14, 229 (1965).
    [3]D. F. Williams and M. Schadt, Proc. IEEE. 58, 476 (1970).
    [4]D. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Robert, Thin. Solid. Films. 94, 171 (1982).
    [5]C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    [6]J. H. Burroughs, D. C. Bradley, A. R. Brown, R. N. Marks, K . Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature. 347, 539 (1990).
    [7]C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L713 (1988).
    [8]M. Ear, C. Adachi, T. Tsutsui and S. Saito, Chem. Phys. Lett. 178, 488 (1991).
    [9]J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
    [10]J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995).
    [11]J. Kido, H. Shionoya and K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
    [12]黃孝文、陳金鑫,有機電激發光材料與元件 (2005)。
    [13]T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys. 73, 4344 (1993).
    [14]S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
    [15]B. J. Chen, W. Y. Lai, Z. Q. Gao, C. S. Lee, S. T. Lee, and W. A. Gamblig, Appl. Phys. Lett. 75, 4010 (1999).
    [16]L. F. Cheng, L. S. Liao, W. Y. Lai, X. H. Sun, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 319, 418 (2000).
    [17]J. H. Lee, C. I. Wu, S. W. Liu, C. A. Huang, and Y. Chang, Appl. Phys. Lett. 86, 103506 (2005).
    [18]J. H. Lee, Y. H. HO, T. C. Lin, and C. F. Wu, J. Electrochem. Soc. 154, 226 (2007).
    [19]S. W. Liu, C. C. Lee, C. H. Wang, J. H. Lee, C. T. Chen, and J. K. Wang, Chem. Phys. Lett. 474, 207 (2009).
    [20]W. D. Gill, J. Appl. Phys. 43, 5033 (1972).
    [21]R. M. Glaeser and R. S. Berry, J. Chem. Phys. 44, 3797 (1996).
    [22]E. Pinotti, A. Sassella, A. Borghesi, and R. Tubino, Synth. Met. 122, 169 (2001).
    [23]C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
    [24]P. N. M. dos Anjos, H. Aziz, N. X. Hu, and Z. D. Popovic, Organic Electronics 3, 9 (2002).
    [25]M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Appl. Phys. Lett. 68, 1787 (1996).
    [26]J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, and R. L. Moon, J. Appl. Phys. 80, 6002 (1996).
    [27]H. Aziz, Z. D. Popovic, C. P. Tripp, N. Hu, A.Hor, and G. Xu, Appl. Phys. Lett. 72, 2642 (1998).
    [28]H. Aziz, Z. D. Popovic, S. Xie, A. Hor, N. Hu, C. P. Tripp, and G. Xu, Appl. Phys. Lett. 72, 756 (1998).
    [29]V. N. Savvateev, A. H. Yakimov, D. Davidov, R. M. Pogreb, R. Neumann, and Y. Avny, Appl. Phys. Lett. 71, 3344 (1997).
    [30]L. M. Do, K. Kim, T. Zyung, H. K. Shim, and J. J. Kim, Appl. Phys. Lett. 70, 3470 (1997).
    [31]M. Kawaharada, M. Ooishi, T. Saito, and E. Hasegawa, Synth. Met. 91, 113 (1997).
    [32]L. S. Liao, J. He, X. Zhou, M. Lu, Z. H. Xiong, Z. B. Deng, X. Y. Hou, and S. T. Lee, J. Appl. Phys. 88, 2386 (2000).
    [33]W. Wang, S. F. Lim, and S. J. Chua, J. Appl. Phys. 91, 5712 (2002).
    [34]E. Han, L. Do, N. Yamamoto, and M. Fujihira, Thin Solid Films 273, 202 (1996).
    [35]S. Tokito, H. Aziz, and Y. Taga, Appl. Phys. Lett. 69, 878 (1996).
    [36]Y. Shirota, K. Okumoto, and H. Inada, Synth. Met. 111, 387 (2000).
    [37]D. F. O’Brien, P. Burrows, S. R. Forrest, B. E. Koene, D. E. Koene, D. E. Loy, and M. E. Thompson, Adv. Mater. 10, 1108 (1998).
    [38]F. Steuber, J. Staudigel, M. Stossel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissortel, and J. Salbeck, Adv. Mater. 12, 130 (2000).
    [39]Y. Hamada, T. Sano, K. Shibata, and K. Kuroki, Jpn. J. Appl. Phys. 34, L824 (1995).
    [40]Y. Sato and H. Kanai, Mol. Cryst. Liq. Cryt. 253, 143 (1994).
    [41]C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).
    [42]J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
    [43]J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, and J. Shi, Synth. Met. 111, 233 (2000).
    [44]D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, J. Appl. Phys. 93, 1108 (2003).
    [45]M. Yahiro, D. Zou, and T. Tsutsui, Synth. Met. 111, 245 (2000).
    [46]S. T. Lee, Z. Q. Gao, and L. S. Hung, Appl. Phys. Lett. 75, 1404 (1999).
    [47]C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).
    [48]H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, Science. 283, 1900 (1999).
    [49]C. J. Mello, H. F. Wittmann, and R. C. Friend, Adv. Mater. 9, 230 (1997).
    [50]C. C. Lee, S. W. Liu, and Y. T. Chung, J. Phys. D: Appl. Phys. 43, 075102 (2010).
    [51]A. Yassar, G. Horowitz, P. Valat, V. Wintgens, M. Hmyene, F. Deloffre, P. Srivastava, P. Lang, and F. Gamier, J. Phys. Chem. 99, 9155 (1995).
    [52]J. Cornil, D. Beljonne, J. P. Calbert, and J. L. Bredas, Adv. Mater. 13, 1053 (2001).
    [53]D. M. Pai, J. Chem. Phys. 52, 2285 (1970).
    [54]P. M. Borsenberger, L. Pautmeier, and H. Bässler, J. Chem.Phys. 94, 5447 (1991).
    [55]S. Grimme, Angew. Chem. Int. Edn Engl. 47, 3430 (2008).
    [56]Z. Chen, A. Lohr, C. R. S. Möller, and F. Würthner, Chem. Soc. Rev. 38, 564 (2009).
    [57]Z. D. Popovic, H. Aziz, A. Ioannidis, and P. N. M. Anjos, J. Appl. Phys. 89, 4673 (2001).
    [58]D. Y. Kondakov, J. Appl. Phys. 97, 024503 (2005).
    [59]C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, Japan. J. Appl. Phys. 11, 7560 (2004).
    [60]C. C. Lee, M. Y. Chang, P. T. Huang, Y. C. Chen, Y. Chang, and S. W. Liu, J. Appl. Phys. 101, 114501 (2007).
    [61]A. B. Walker, A. Kambili, and S. J. Martin, J. Phys.:Condens. Matter 14, 9825 (2002).
    [62]Z. Chiguvare, J. Parisi, and V. Dyakonov, J. Appl. Phys. 94, 2440 (2003).
    [63]H. A. A. Attar and A. P. Monkman, Adv. Funct. Mater. 16, 2231 (2006).
    [64]B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 84, 833 (1998).

    QR CODE