簡易檢索 / 詳目顯示

研究生: 池可允
Ke-Yun Chih
論文名稱: 開發高穿透及低霧度之聚一氯對二甲苯基板製程技術
Development of the polychloroparaxylene substrates with high transmittance and low haze
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shuen-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 有機發光二極體撕膜式可揉式極薄聚一氯對二甲苯基板
外文關鍵詞: OLED, Peel off, Crumple, Ultrathin, Light, Parylene-C, Substrate
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I ABSTRACT II 誌謝 IV 目錄 IV 圖索引 VIII 表索引 XI 第一章 緒論 1 1.1 前言 1 1.2 傳統可撓式基板與聚一氯對二甲苯基板之差異 2 1.3 文獻回顧 3 1.4 研究動機 5 第二章 理論基礎 6 2.1 有機發光二極體工作原理 6 2.2 有機半導體傳輸機制 7 2.3 元件發光效率 10 2.4 高分子鍍膜機之原理 11 2.5 原子級薄膜沉積之原理 12 第三章 實驗架構 14 3.1 實驗設備 14 3.1.1 超音波清洗機 14 3.1.2 加熱烤盤 14 3.1.3 旋轉塗佈機 15 3.1.4 曝光機 15 3.1.5 材料純化系統 16 3.1.6 高真空熱蒸鍍系統 17 3.1.7 氮氣循環手套箱系統 18 3.1.8 濺鍍機 19 3.1.9 台階儀 20 3.1.10 輝度計 20 3.1.11 原子級薄膜沉積系統 20 3.1.12 高分子鍍膜機 21 3.1.13 有機發光二極體壽命量測 22 3.1.14 紫外光至可見光光譜儀 23 3.2 實驗前置作業 23 3.2.1 有機材料純化 23 3.2.2 旋塗緩衝層 24 3.3 實驗步驟 24 3.3.1 元件基板四道清洗 24 3.3.2 高分子鍍膜機沉積 25 3.3.3 高真空熱蒸鍍製程 25 3.3.4 元件封裝 27 3.3.5 原子級薄膜沉積系統 28 3.3.6 高分子鍍膜機沉積 28 第四章 研究結果與討論 29 4.1 高分子鍍膜機之材料選擇 29 4.2 機台結構設計分析 32 4.3 汽化段溫度調變與穿透度之關係 33 4.4 裂解段溫度調變與穿透度之關係 36 4.5 溫度預熱對於聚一氯對二甲苯薄膜之穿透度分析 37 4.6 不同純度之材料對於聚一氯對二甲苯薄膜之穿透度分析 38 4.7不同厚度對於聚一氯對二甲苯薄膜之穿透度及霧度分析 39 4.8 慢速及快速沉積對穿透度及霧度影響 41 4.9 不同霧度之基板對於有機發光二極體之影響 43 4.10 撕膜前與撕膜後之元件特性比較 45 第五章 結論 49 第六章 未來展望 50 參考文獻 52

    [1] Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N. and Heeger, A. J., ‘‘Flexible light-emitting diodes made from soluble conducting polymers,’’ Nature, 357, 477 (1992).
    [2] Gu, G., Burrows, P. E., Venkatesh, S., Forrest, S. R. and Thompson, M. E., ‘‘Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,’’ Optics letters, 22, 172 (1997).
    [3] Kim, H., Horwitz, J. S., Kushto, G. P., Kafafi, Z. H. and Chrisey, D. B., “Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes”, Applied physics letters, 79, 284 (2001).
    [4] Ma, J., Li, S. Y., Zhao, J. Q. and Ma, H. L., “Preparation and properties of indium tin oxide films deposited on polyester substrates by reactive evaporation”, Thin Solid Films, 307, 200 (1997).
    [5] Minami, T., Sonohara, H., Kakumu, T. and Takata, S., “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering”, Thin Solid Films, 270, 37 (1995).
    [6] Kim, Y. S., Park, Y. C., Ansari, S. G., Lee, J. Y., Lee, B. S. and Shin, H. S., “Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering”, Surface and Coatings Technology, 173, 299 (2003).
    [7] Bae, J. W., Kim, H. J., Kim, J. S., Lee, Y. H., Lee, N. E., Yeom, G. Y. and Ko, Y. W., “Tin-doped indium oxide thin film deposited on organic substrate using oxygen ion beam assisted deposition”, Surface and Coatings Technology, 131, 196 (2000).
    [8] Kulkarni, A. K., Schulz, K. H., Lim, T. S. and Khan, M., “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques”, Thin solid films, 345, 273 (1999).
    [9] Innocenzo, J. G., Wessel, R. A., O'Regan, M. and Sellars, M. 47.2: Plastic Displays‐Films for OLED Displays. In SID Symposium Digest of Technical Papers (Vol. 34, No. 1, pp. 1329-1331). Oxford, UK: Blackwell Publishing Ltd. (2003).
    [10] Hogg, A., Aellen, T., Uhl, S., Graf, B., Keppner, H., Tardy, Y. and Burger, J., “Ultra-thin layer packaging for implantable electronic devices”, Journal of Micromechanics and Microengineering, 23, 075001 (2013).
    [11] Wolf, R., Wandel, K. and Boeffel, C. “Moisture barrier films deposited on PET by ICPECVD of SiNx”, Plasma Processes and Polymers, 4, 185 (2007).
    [12] Krebs, F. C., “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps”, Organic Electronics, 10, 761 (2009).
    [13] Boehme, M. and Charton, C., “Properties of ITO on PET film in dependence on the coating conditions and thermal processing”, Surface and Coatings technology, 200, 932 (2005).
    [14] Yang, C. W. and Park, J. W., “The cohesive crack and buckle delamination resistances of indium tin oxide (ITO) films on polymeric substrates with ductile metal interlayers.” Surface and Coatings Technology, 204, 2761 (2010).
    [15] Alzoubi, K., Hamasha, M. M., Lu, S. and Sammakia, B., “Bending fatigue study of sputtered ITO on flexible substrate”, Journal of Display Technology, 7, 593 (2011).
    [16] Lewis, J. S. and Weaver, M. S., “Thin-film permeation-barrier technology for flexible organic light-emitting devices”, IEEE Journal of selected topics in quantum electronics, 10, 45 (2004).
    [17] McKeen, L. W., “Permeability properties of plastics and elastomers”, William Andrew (2016).
    [18] Massey, L. K. Permeability properties of plastics and elastomers: a guide to packaging and barrier materials. William Andrew (2003).
    [19] Machorro, R., Regalado, L. E. and Siqueiros, J. M., “Optical properties of parylene and its use as substrate in beam splitters”, Applied optics, 30, 2778 (1991).
    [20] Lee, J. H. and Kim, A., “Structural and thermal characteristics of the fast-deposited parylene substrate for ultra-thin organic light emitting diodes”, Organic Electronics, 47, 147 (2017).
    [21] Lee, J. H., Kim, H. M., Kim, K. B., Kabe, R., Anzenbacher Jr, P. and Kim, J. J., “Homogeneous dispersion of organic p-dopants in an organic semiconductor as an origin of high charge generation efficiency”, Applied Physics Letters, 98, 81 (2011).
    [22] Jean, J., Wang, A. and Bulović, V., “In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells”, Organic Electronics, 31, 120 (2016).
    [23] Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. and Forrest, S. R., “Highly efficient phosphorescent emission fromorganic electroluminescent devices”, Nature, 395, 151 (1998).
    [24] Adachi, C., Baldo, M. A., Thompson, M. E. and Forrest, S. R., “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device”, Journal of Applied Physics, 90, 5048 (2001).
    [25] Pope, M., Kallmann, H. P. and Magnante, P., “Electroluminescence in Organic Crystals”, The Journal of Chemical Physics, 38, 2042 (1963).
    [26] Wang, L., Meyer, C., Guibert, E., Homsy, A. and Whitlow, H. J., “Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 404, 224 (2017).
    [27] Liu, X., MacNaughton, S., Shrekenhamer, D. B., Tao, H., Selvarasah, S., Totachawattana, A. and Padilla, W.-J., “Metamaterials on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency”, Applied Physics Letters, 96, 011906 (2010).
    [28] Gluschke, J. G., Seidl, J., Lyttleton, R. W., Carrad, D. J., Cochrane, J. W., Lehmann, S. and Micolich, A. P., “Using ultrathin parylene films as an organic gate insulator in nanowire field-effect transistors”, Nano Letters, 18, 4431 (2018).
    [29] Park, S. H. K., Oh, J., Hwang, C. S., Lee, J. I., Yang, Y. S. and Chu, H. Y., “Ultrathin Film Encapsulation of an OLED by ALD” Electrochemical and Solid-State Letters, 8, 21(2005).
    [30] Park, S. H. K., Oh, J., Hwang, C. S., Lee, J. I., Yang, Y. S., Chu, H. Y. and Kang, K. Y., “Ultra Thin Film Encapsulation of OLED on Plastic Substrate”, Journal of Information Display, 5, 30 (2005)
    [31] Martín-Sánchez, J., Mariscal, A., De Luca, M., Martín-Luengo, A. T., Gramse, G. and Halilovic, A., “A Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers” Nano Research, 11, 1399 (2018).
    [32] Starostin, S. A., Keuning, W., Schalken, J. P., Creatore, M., Kessels, W. M., Bouwstra, J. B. and Vries, H. W., “Synergy Between Plasma-Assisted ALD and Roll-to-Roll Atmospheric Pressure PE-CVD Processing of Moisture Barrier Films on Polymers”, Plasma Processes and Polymers, 13, 311 (2015).
    [33] Ao, W., Li, C., Wang, Y., Liu, X., Xin, X., Gao, F. and Zhang, J., “AMOLED Encapsulation Technology and Prospect”, SID Symposium Digest of Technical Papers, 49, 734 (2018).
    [34] Ali, K., Choi, K. H., Jo, J., Lee and Y. W., “High rate roll-to-roll atmospheric atomic layer deposition of Al2O3 thin films towards gas diffusion barriers on polymers. Materials Letters”, 136, 90 (2014).
    [35] Carcia, P. F., McLean, R. S., Reilly, M. H. and Groner, M. D., “Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers”, Applied Physics Letters, 89, 031915 (2006).
    [36] Hoffmann, L., Theirich, D., Pack, S., Kocak, F., Schlamm, D., Hasselmann, T. and Riedl, T., “Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD”, ACS Applied Materials & Interfaces, 9, 4171 (2018).
    [37] Gosset, L. G., Damlencourt, J. F., Renault, O., Rouchon, D., Holliger, P., Ermolieff, A. and Séméria, M. N., “Interface and material characterization of thin Al2O3 layers deposited by ALD using TMA/H2O” Journal of Non-Crystalline Solids, 303, 17 (2002).
    [38] Ku, B., Abbas, Y., Sokolov, A. S. and Choi, C., “Interface engineering of ALD HfO 2 -based RRAM with Ar plasma treatment for reliable and uniform switching behaviors”, Journal of Alloys and Compounds, 735, 1181 (2018).
    [39] Jeong, S. J., Gu, Y., Heo, J., Yang, J., Lee, C. S., Lee, M. H. and Hwang, S., “Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors”, Scientific Reports, 6 (2016).
    [40] BENOIT, B. A. and PETTIGREW, L. E. United States Patent and Trademark Office.
    [41] Beach, W. F. “Xylylene polymers” Kirk‐Othmer Encyclopedia of Chemical Technology (2000)
    [42] Kim, H. T., Koo, T. and Park, C., “Parylene-C thin films deposited on polymer substrates using a modified chemical vapor condensation method”, Korean Journal of Chemical Engineering, 27, 748 (2010)

    無法下載圖示 全文公開日期 2025/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE