簡易檢索 / 詳目顯示

研究生: 紀凱暉
Kai-Hui Chi
論文名稱: 利用UKF演算法於IMU/Camera室內2D平面定位系統之評估及避障自主式行為
The Evaluation of UKF Approach for 2D-Plane IMU/Camera Indoor Localization System and Obstacle Avoidance Behavior
指導教授: 李敏凡
Min-Fan Ricky Lee
口試委員: 邱士軒
Shih-Hsuan Chiu
吳秋松
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: 自主式移動機器人慣性導航感測器室內定位避障行為類神經網路無跡卡爾曼濾波器
外文關鍵詞: Autonomous mobile robot, inertial measurement unit, indoor localization, obstacle avoidance, Neural Network, Unscented Kalman filter
相關次數: 點閱:326下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這近十年的研究中,自主式機器人已經是一個引起高度注目的研究領域,舉凡是家庭照護系統的應用,探索危險區域,救援任務以及軍事用途上都能夠看見機器人的利用價值。機器人自主式避障行為以及定位系統的表現,對於機器人系統應用在室內環境來說佔有極重要的優先發展基礎而構成本篇論文的兩大討論主題。
    在本篇論文探討中,具體的室內環境可做為模仿居家照護場景以及聯合式機器人系統模擬 (Joint system)。 機器人非線性的移動行為和IMU訊號狀態處理是兩大主要目標來克服,論文架構中將提出使用Unscented卡爾曼濾波器來解決IMU系統狀態中因積分產生的累積積分誤差,並使用天花板全向照相機做為修正誤差的參考訊號。主要結構依據攝影機的參考軌跡透過UKF演算法去執行IMU的非線性狀態更新來達到修正誤差並定位的功能。本篇論文並探討了自主式避障行為根據類神經演算法設計,以256種模式來分別環境並做出適當反應使其避障行為成功。雷射測距儀為主要的儀器應用在避障行為上。
    實驗結果說明了類神經演算法應用於避障行為的有效性和成立,另外Unscented 卡爾曼濾波器不管在開迴路或閉迴路的演算結構中,皆可以達成收斂的效果以避免累積積分誤差之主要因素。其中實驗結果並評估了關於自主式避障非線性行為的定位誤差分析,以做出將此演算法應用在低花費的慣性導航系統之貢獻。


    In recent year, autonomous mobile robot has become an important and popular research topic. It is widely used in the application of homecare system, exploring in dangerous, rescue task and military. The foundation of the mobile robot behavior is the obstacle avoidance, and localization system is also same priority which applied for the indoor environment.
    In this thesis, the specific indoor environment is the set up as scenario which is applied for homecare service robot and joint robot system. The nonlinear motion of mobile robot and signal state processing of IMU is the two main proposed approaches to overcome. The methodology in framework is illustrated the Unscented Kalman filter to solve the problem about accumulated error of IMU integrate with ceiling omni-directional camera. The main structure of the algorithm executes and updates of the IMU’s nonlinear state output by observing signal from camera. The other part proposes a Neural Network control system that is able to guide the mobile robots traverse through a maze with arbitrary obstacles. For input data, laser range finder is main sensors for passing on information of environment.
    The empirical results show the effectiveness and the validity of the obstacle avoidance behavior of Neural Network control strategy. The evaluation of UKF applied on system state of IMU’s output state can be actuality convergence to overcome the accumulated error and finish the goal of localization.

    ABSTRACT I 中文摘要 II Acknowledgments III Content IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 3 1.3 Propose 5 1.4 Structure Configuration of Thesis 7 Chapter 2 Analysis 8 2.1 System Overview 9 2.2 Coordinate System 11 2.3 Inertial Navigation System 15 2.3.1 Inertial Measurement Unit (IMU)……………………………………….…16 2.3.2 Ceiling omni-directional camera (IMU)……………………………………20 2.4 Kinematic Model 22 2.4.1 Nonholonomic System………………….…………………………………..23 2.4.2 Kinematic Model……………………….…………………………………...25 2.5 Laser Range Finder 30 2.6 Obstacle Avoidance 33 2.7 Method Overview 36 2.7.1 System Overview…..…………….…………………………………………36 2.7.2 Experiment System Set Up ……………..………………………………….38 2.7.3 Experiment Equipment Integration……….………………………………...42 Chapter 3 Obstacle Avoidance 46 3.1 Neural Network Algorithm 46 3.1.1 One Neural Node of Back Propagation……………………………………..47 3.1.2 Back Propagation Model ………………..………………………………….49 3.2 Obstacle avoidance using Neural Network 50 3.2.1 Sensor Areas Definition and Pattern Strategy………………………………51 3.2.2 Respond Example…………………………………………………………...53 3.2.3 Neural Network Implementation…………………...……………………….53 Chapter 4 Unscented Kalman Filter 58 4.1 Principle of Kalman Filter 59 4.2 Unscented Transformations (UT) 63 4.3 Unscented Kalman Filter (UKF) 66 4.4 Implementation of UKF 70 Chapter 5 Experiment Results 73 5.1 Obstacle avoidance 73 5.2 Evaluation of IMU state output 81 Chapter 6 Conclusion and Future Work 100 6.1 Conclusion 100 6.2 Future work 101 Reference 102 Biography 105

    [1] M. S. Grewal, V. D. Henderson, and R. S. Miyasako, "Application of Kalman filtering to the calibration and alignment of inertial navigation systems," Automatic Control, IEEE Transactions on, vol. 36, pp. 3-13, 1991.
    [2] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, "Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization," in Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, 1999, pp. 1656-1663 vol.2.
    [3] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, "A new approach for filtering nonlinear systems," in American Control Conference, 1995. Proceedings of the, 1995, pp. 1628-1632 vol.3.
    [4] U. J. Julier SJ, "A New Extension of the Kalman Filter to Nonlinear Systems," The Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, 1997 1997.
    [5] P. Batista, C. Silvestre, P. Oliveira, and B. Cardeira, "Low-cost Attitude and Heading Reference System: Filter design and experimental evaluation," in Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp. 2624-2629.
    [6] Z. Anmin and S. X. Yang, "A goal-oriented fuzzy reactive control for mobile robots with automatic rule optimization," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 3688-3693.
    [7] Z. Anmin and S. X. Yang, "Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37, pp. 610-621, 2007.
    [8] P. Zhang, J. Gu, E. E. Milios, and P. Huynh, "Navigation with IMU/GPS/digital compass with unscented Kalman filter," in Mechatronics and Automation, 2005 IEEE International Conference, 2005, pp. 1497-1502 Vol. 3.
    [9] R. Zhang and L. M. Reindl, "Inertial localization system using unscented Kalman filter for 3D positioning," in Image and Signal Processing (CISP), 2011 4th International Congress on, 2011, pp. 2669-2673.
    [10] K. Yuan, H. Wang, and H. Zhang, "Robot Position Realization Based on Multi-sensor Information Fusion Algorithm," in Computational Intelligence and Design (ISCID), 2011 Fourth International Symposium on, 2011, pp. 294-297.
    [11] L. Taehee, S. Joongyou, and C. Dongil, "Position estimation for mobile robot using in-plane 3-axis IMU and active beacon," in Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on, 2009, pp. 1956-1961.
    [12] O. Seung-Min, "Multisensor fusion for autonomous UAV navigation based on the Unscented Kalman Filter with Sequential Measurement Updates," in Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010 IEEE Conference on, 2010, pp. 217-222.
    [13] W. Dae Hee, S. Sangkyung, and L. Young Jae, "UKF based vision aided navigation system with low grade IMU," in Control Automation and Systems (ICCAS), 2010 International Conference on, 2010, pp. 2435-2438.
    [14] 羅貽騂, "利用UKF發展INS/GPS整合式定位演算法之評估," 碩士, 測量及空間資訊學系碩博士班, 國立成功大學, 台南市, 2008.
    [15] 邱富信, "多自主式移動機器人之協同運作行為分析與控制," 碩士, 自動化及控制研究所, 國立臺灣科技大學, 台北市, 2009.
    [16] 李慧恩, "自主式移動機器人之目標追蹤," 碩士, 自動化及控制研究所, 國立臺灣科技大學, 台北市, 2010.
    [17] H. R. Beom and H. S. Cho, "A Sensor-based Obstacle Avoidance Controller For A Mobile Robot Using Fuzzy Logic And Neural Network," in Intelligent Robots and Systems, 1992., Proceedings of the 1992 lEEE/RSJ International Conference on, 1992, pp. 1470-1475.
    [18] K. Demirli and İ. B. Turkşen, "Sonar based mobile robot localization by using fuzzy triangulation," Robotics and Autonomous Systems, vol. 33, pp. 109-123, 2000.
    [19] V. Ganapathy, Y. Soh Chin, and J. Ng, "Fuzzy and Neural controllers for acute obstacle avoidance in mobile robot navigation," in Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on, 2009, pp. 1236-1241.
    [20] M. Harb, R. Abielmona, and E. Petriu, "Speed control of a mobile robot using neural networks and fuzzy logic," in Neural Networks, 2009. IJCNN 2009. International Joint Conference on, 2009, pp. 1115-1121.
    [21] P. Jensfelt and H. I. Christensen, "Pose tracking using laser scanning and minimalistic environmental models," Robotics and Automation, IEEE Transactions on, vol. 17, pp. 138-147, 2001.
    [22] H.-H. Lin and C.-C. Tsai, "Laser Pose Estimation and Tracking Using Fuzzy Extended Information Filtering for an Autonomous Mobile Robot," Journal of Intelligent & Robotic Systems, vol. 53, pp. 119-143, 2008.
    [23] O. R. E. Motlagh, T. S. Hong, et al., "Development of a new minimum avoidance system for a behavior-based mobile robot.," Fuzzy Sets and Systems 160(13): 1929-1946., 2009.
    [24] C. Yau-Zen, H. Ren-Ping, and C. Yung-Pyng, "A Simple Fuzzy Motion Planning Strategy for Autonomous Mobile Robots," in Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, 2007, pp. 477-482.
    [25] C. Kai-Hui and M. R. Lee, "Obstacle avoidance in mobile robot using Neural Network," in Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on, 2011, pp. 5082-5085.
    [26] F. O. a. d. S. Karray, C.W., , "Soft Computing and Intelligent Systems Design," Theory, Tools, and Applications, Addison Wesley, Harlow, U.K., 2004.
    [27] S. J. Julier and J. K. Uhlmann, "Unscented filtering and nonlinear estimation," Proceedings of the IEEE, vol. 92, pp. 401-422, 2004.
    [28] S. J. Julier, "The scaled unscented transformation," in American Control Conference, 2002. Proceedings of the 2002, 2002, pp. 4555-4559 vol.6.
    [29] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, 2000, pp. 153-158.
    [30] R. Kandepu, B. Foss, and L. Imsland, "Applying the unscented Kalman filter for nonlinear state estimation," Journal of Process Control, vol. 18, pp. 753-768.
    [31] 賴俊男, "非線性濾波器於GPS導航之設計," 碩士, 通訊與導航工程系, 國立臺灣海洋大學, 基隆市, 2007.

    QR CODE