簡易檢索 / 詳目顯示

研究生: 鄭玉珊
TRI - RAKHMAWATI SOEDJARWO TEDJOKUSUMO
論文名稱: 分散矽溶膠及其應用的玻璃基板上形成的光散射層
Dispersion of Colloidal Silica and Its Application to form a Light-Scattering Layer on Glass Substrates
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 林析右
Shi-Yow Lin
邱正杰
Jay Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: 表面調整氧化矽粒子PVPCTAB光捕捉透明導電膜
外文關鍵詞: Surface modification, silica particles, polyvinyl pyrrolidone, cetylrimethylammonium bromide, light trapping, transparent conductive oxide
相關次數: 點閱:261下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

作為新一代矽薄膜太陽電池元件製作使用的透明導電氧化物(TCO)玻璃除了在透光率及導電性上有一定的需求外,對於光散射特性的提升特別是對近紅外光的有效散射能力為未來疊層型電池製作時不可或缺的要件。本論文中我們採用以噴塗球型氧化矽粉體於玻璃基材上來作為光散射層,考慮次微米級球型氧化矽粉體有著相當高的表面勢能,造成粒子間的互相凝聚使難達到良好的表面分散。因此如何製作一能有效降低球型氧化矽顆粒表面勢能來達到最適化的分散為本論文重要的課題。
本研究係以選擇適當原始粒徑的氧化矽球型粉體並以乙二醇為溶劑,混合後添加平均分子量為58000的聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)作為表面活性劑,觀察並嘗試提高氧化矽粒子在該系統中的分散特性。
實驗結果顯示,以球型氧化矽粉體和適當分散劑混於有機溶劑中再以5000rpm高轉速的乳膠均質機結合超音波震盪器持續進行24小時候,可以有效提升氧化矽粒子間的凝聚作用。接著將調製好的粒子溶膠(gel)以旋轉塗佈法製作散射層並由SEM與UV/VIS量測觀察氧化矽散射層的表面粒子狀態與光學特性。結果發現以原始粒徑為0.25m的氧化矽粉末經適當分散塗佈於玻璃基材上時,可形成均勻粒子分散層(最大粒徑不超過2m)。再經固定化之後可獲得穿透度超過90%並且在700~1200 nm長波長光範圍有大於25%的散射穿透率特性。


Light trapping technique is of great importance in increasing the conversion efficiency of thin film silicon solar cells, through minimizing optical reflection and thus increasing the light adsorption in the active layer region. Light trapping is strongly influenced by the surface roughness of transparent conductive oxide layer. One of the efforts to achieve this purpose is using amorphous silica balls as the scattering objects, and dispersing these silica balls on the surface of glass substrates. However, submicron silica particles, with high surface energy, tend to aggregate with each other and therefore cause poor dispersion capacity. Modification of colloidal silica surface is necessary to achieve optimum stability so that they could be dispersed well to form an ideal scattering layer on TCO glasses.
Here, in this thesis, surface modification using nonionic polyvinyl pyrrolidone, with an average molecular weight 58,000, as a surfactant was chosen. The effect of dispersion was also compared with the case when cetyltrimethylammonium bromide was applied as an ionic stabilizer.
A good mixture between colloidal silica in an organic solvent and a stabilizer was needed to achieve well-dispersed and stabilized silica particle emulsion. In addition, high speed of the emulsion homogenizer, as high as 5000 rpm, combined with ultrasonic vibration was applied for 24 hours to break the interaction between particles and give stable colloidal silica. Then, spin coating with 3000 rpm for 20 seconds in the first step and 4000 rpm for 30 seconds in the second step was performed to deposit modified silica particles on the glass substrates. The dispersion of the light scattering layer was investigated by scanning electron microscopy (SEM) and its optical properties were evaluated using UV/VIS spectrometer with an integral sphere.

COVER RECOMMENDATION LETTER APPROVAL LETTER CHINESE ABSTRACT ENGLISH ABSTRACT ACKNOWLEDGMENTS TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Research Aim 2 LITERATURE REVIEW 2.1 The Dejaguin, Landau, Verwey, and Overbeek (DLVO) Theory 2.2 Non-DLVO Forces 2.3 Colloidal Silica and Its Problem 2.4 Modification of Silica Surface 2.5 Transparent Conductive Oxide (TCO) Films 3 MATERIALS AND METHOD 3.1 Materials 3.1.1 Silica (SiO2) 3.1.2 Ultra Pure Water 3.1.3 Ethylene Glycol (EG) 3.1.4 Polyvinyl Pyrrolidone (PVP) 3.1.5 Cetyltrimethylammonium Bromide (CTAB) 3.1.6 Substrate 3.1.7 Detergent 3.1.8 Isopropyl Alcohol (IPA) 3.1.9 Acetone 3.1.10 Nitrogen (N2) 3.2 Equipment 3.2.1 Ultrasonic Cleaner Water Bath 3.2.2 Emulsion Homogenizer 3.2.3 Stirring Hot Plate 3.2.4 Furnace 3.2.5 Air Brush 3.2.6 Spin Coating 3.2.7 Low Pressure Chemical Vapor Deposition (LPCVD) 3.3 Methodology 3.4 Measurement 3.4.1 Scanning Electron Microscopy (SEM) 3.4.2 Ultraviolet-Visible Spectroscopy 4 RESULT AND DISCUSSION 4.1 Dispersion of Colloidal Silica 4.2 Light transmission properties of glass + dispersed silica layer 5 CONCLUSION REFERENCES APPENDIX A.1 Zeta Potential Measurement A.2 Dispersion of Colloidal Silica in Non-Aqueous System A.3 Light transmission properties of glass + GZO grown above dispersed silica layer A.4 Problems in CTAB as the Stabilizer in Colloidal Silica

1. Beyer, W.; Hupkes, J.; Stiebig, H. Transparent Conducting Oxide Films for Thin Film Silicon Photovoltaics. Thin Solid Films, 2007, 516, 147-149.
2. Yang, W. J.; Tsao, C. C.; Hsu, C. Y.; Chang, H. C.; Chou, C. P.; Kao, J. Y. Fabrication and Characterization of Transparent Conductive ZnO:Al Thin Films Deposited on Polyethylene Terephthalate Substrates. J. Am. Ceram. Soc., 2012, 1.
3. Chen, X. L.; Li, L. N.; Wang, F.; Ni, J.; Geng, X. H.; Zhang, X. D.; Zhao, Y. Natively Textured Surface Aluminum-doped-Zinc Oxide Transparent Conductive Layers for Thin Film Solar Cells via Pulsed Direct-Current Reactive Magnetron Sputtering. Thin solid Films, 2012, 520, 5392.
4. Muller, J.; Rech, B.; Springer, J.; Vanecek, M. TCO and Light Trapping in Silicon Thin Film Solar Cells. Solar Energy, 2004, 77, 917.
5. Zhang, X. D.; Huang, Q.; Wang, Y.; Liu, Y.; Chen, X.; Zhao, Y. Advanced Light Trapping Materials: Double Layer ZnO:B based Transparent Conductive Oxide. Thin Solid Films, 2011, 520, 1186.
6. Krc, J.; Lipovsek, B.; Bokalic, M.; Campa, A.; Oyama, T.; Kambe, M.; Matsui, T.; Sai, H.; Kondo, M.; Topic, M. Potential of Thin-Film silicon Solar Cells by using High Haze TCO Superstrates. Thin Solid Films, 2010, 518, 3054.
7. Lo, S. S.; Lin, C. Y.; Jan, D. J. Transparent Conductive Oxide Layer with Monolayer Closed-Pack Al-doped ZnO Spheres and Their Application to a-Si Thin-Film Solar Cells. Optics Letters, Vol. 36, No. 18, 2011, 3678.
8. Schade, H.; Lechner, P.; Geyer, R.; Stiebig, H.; Rech, B.; Kluth, O. Texture Properties of TCO Uniquely Determining Light Trapping in Thin-Film Silicon Solar Cells. IEEE, 2005, 1436.
9. Dewald, W.; Sittinger, V.; Szyszka, B.; Wippler, D.; Hupkes, J.; Obermeyer, P.; Hamelmann, F.; Stiebig, H.; Sauberlich, F.; Severin, D.; Klein, S.; Rhode, M.; Schmidt, U. Evaluation of Textured TCOs for a-Si:H/Mc-Si:H Thin Film Solar Cells by Angular Resolved Light Scattering Measurements. 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, 2704.
10. Park, J. T.; Seo, J. A.; Ahn, S. H.; Kim, J. H.; Kang, S. W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. Journal of Industrial and Engineering Chemistry, 2010, 16, 517-522.
11. Ma, X. K.; Lee, N. H.; Oh, H. J.; Kim, J. W.; Rhee, C. K.; Park, K. S.; Kim, S. J. Surface Modification and Characterization of Highly Dispersed Silica Nanoparticles by a Cationic Surfactant. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010, 358, 172-176.
12. Venkataraman, M. The Effect of Colloidal Stability on the Heat Transfer Characteristics of Nanosilica Dispersed Fluid. B. E. University of Madras, 2005, 16-41.
13. Jal, P. K.; Patel, S.; Mishra, B. K. Chemical Modification of Silica Surface by Immobilization of Functional Groups for Extractive Concentration of Metal Ions. Talanta, 2004, 62, 1005-1028.
14. Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev., 2008, 108, 3895-3896.
15. Kai, Z.; Qiang, F.; Yuhong, H.; Dehui, Z. Encapsulation of Inorganic Particles by Dispersion Polymerization through Ultrasonic Irradiation. Science in China Ser. B Chemistry, Vol. 25, No. 6, 2005, 545.
16. Bergman, L.; Rosenholm, J.; Ost, A. B.; Duchanoy, A.; Kankaanpaa, P.; Heino, J.; Linden, M. On the Complexity of Electrostatic suspension Stabilization of Functionalized silica Nanoparticles for Biotargeting and Imaging Applications. Journal of Nanomaterials, 2008, 2.
17. Kobayashi, M.; Juillerat, F.; Galletto, P.; Bowen, P.; Borkovec, M. Aggregation and Charging of Colloidal Silica Particles: effect of Particle Size. Langmuir, 2005, 21, 5761.
18. Bhattacharjee, S.; Ko, C. H.; Elimelech, M. DLVO Interaction between Rough Surfaces. Langmuir, 1998, 14, 3365.
19. Jansson, M. Bentonite Erosion and Colloid Transport Seminar.
http://www.kemi.kth.se/nuchem/colloid/mj_070420.pdf (Accessed April 30th, 2012).
20. Butt, H. J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces. Wiley-VCH GmbH&Co. KGaA, 2003, 80-107.
21. Sigmund, W.; Pyrgiotakis, G.; Daga, A. Theory and Applications of Colloidal Processing. Invited Book Chapter in Chemical Processing of Ceramics, 2nd Edition, 2005, 276-278.
22. Stechemesser, H.; Dobias, B. Coagulation and Flocculation, 2nd Edition. Surfactant Science Series, Vol. 126, 2005, 147-148.
23. Faraudo, J.; Bresme, F. Origin of the Short-Range, Strong Repulsive Force between Ionic Surfactant Layers. Physical Review Letters, 2005, PRL 94, 077802-1.
24. Chen, S. (2006). Rheological Properties of Oil in Water Emulsions and Particulate Suspensions, Fakultet for naturvitenskap og teknologi.
25. Grasso, D.; Subramaniam, K.; Butkus, M.; Strevett, K.; Bergendahl, J. A Review of Non-DLVO Interactions in Environmental Colloidal Systems. Re/Views in Environmental Science&Bio/Technology 1, 2002, 24-33.
26. Gruen, D. W. R.; Marceija, S.; Pailthorpe, B. A. Hydration force. Chemical Physics Letters, Vol. 82, No. 2, 1981, 315.
27. Kralchevsky, P. A.; Danov, K. D.; Basheva, E. S. Hydration Force due to the Reduced Screening of the Electrostatic Repulsion in Few-Nanometer-Thick Films. Current Opinion in Colloid&Interface Science, 2011, 16, 517.
28. Cosgrove, T. Colloid Science Principles, Methods, and Applications, 2nd Edition. John Wiley&Sons Ltd, 2010, 348.
29. Kornyshev, A. A.; Kossakowski, D. A.; Leikin, S. Surface Phase Transitions and Hydration Forces. The Journal of Chemical Physics, 1992, 6809.
30. Israelachvili, J. N. Intermolecular and Surface Forces, 3rd Edition. Elsevier Inc., 2011, 158-160.
31. Faghihnejad, A.; Zeng, H. Hydrophobic Interactions between Polymer Surfaces: using Polystyrene as a Model System. Dynamic Article Links, 2011, 2746.
32. Cho, E. C.; Lee, J.; Cho, K. Role of Bound Water and Hydrophobic Interaction in Phase Transition of Poly(N-isopropylacrylamide) Aqueous Solution. Macromolecules, 2003, 36, 9929.
33. Liang, Y.; Hilal, N.; Langston, P.; Starov, V. Interaction Forces between Colloidal Particles in Liquid: Theory and Experiment. Advances in Colloidal and Interface Science, 2007, 134-135, 156-157.
34. Hu, Y.; Qiu, G.; Miller, J. D. Hydrodynamic Interactions between Particles in Aggregation and Flotation. Int. J. Miner. Process., 2003, 70, 158.
35. Ewijk, G. A. v. and A. P. Philipse (2001). "Anomalous attraction between colloidal magnetite and silica spheres in apolar solvents."
36. Ibrahim, I. A. M.; Zikry, A. A. F.; Sharaf M. A. Preparation of Spherical Silica Nanoparticles: Stober Silica. Journal of American Science, 2010, 6(11), 985-988.
37. Li, Y. S.; Haynes, C. L. Impacs of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. JACS Articles, 2009, 4834.
38. Baldyga, J.; Jasinska, M.; Jodko, K.; Petelski, P. Precipitation of Amorphous Colloidal Silica from Aqueous Solutions. Accepted Manuscript Chemical Engineering Science, 2012, 1.
39. Bergba, H. E.; 2004. Colloidal and Chemistry of Silica: An Overview. DuPont Experimental Station.
40. Johnsson, A. C. On the Electrolyte Induced Aggregation of Concentrated Silica Dispersions an Experimental Investigation using the Electrospray Technique. Department of Chemistry University of Gothenburg, 2011, 10.
41. Greenwood, P. Surface Modifications and Applications of Aqueous Silica Sols. Department of Chemical and Biological Engineering Chalmers University of Technology, 2010, 3.
42. Klint, A. Amphiphilic Surface Modification of Colloidal Silica Sols. Department of Chemical and Biological Engineering Chalmers University of Technology, 2011, 1-2.
43. Lim, H. M.; Lee, J.; Jeong, J. H.; Oh, S. G.; Lee, S. H. Comparative Study of Various Preparation Methods of Colloidal Silica. Engineering, 2010, 2, 998-1005.
44. Arkan, E. Modified Silica Sols as Emulsifiers. Department of Chemistry University of Gothenburg, 2011, 4.
45. Kamiya, H.; Iijima, M. Surface Modification and Characterization for Dispersion Stability of Inorganic Nanometer-Scaled particles in Liquid Media. Sci. Technol. Adv. Mater. 11, 2010, 044304, 2.
46. Music, S.; Vincekonic, N. F.; sekovanic, L. Precipitation of Amorphous SiO2 Particles and Their Properties. Brazilian Journal of Chemical Engineering, 2011, 91.
47. Ranjan, R. surface Modification of Silica Nanoparticles. The Graduate Faculty of the University of Akron, 2008, 7-8.
48. Rahman, I. A.; Padavettan, V. Review Article Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites-A Review. Journal of Nanomaterials, 2012, 7-8.
49. Madge, D. Grafting of Polymers onto SiO2 Surfaces through Surface-attached Monomers, The Institute for Microsystemtechnology (IMTEK) of the University of Freiburg, 2007, 11.
50. Bryleva, E. Y.; Vodolazkaya, N. A.; Petrossyan, N. O. M.; Samokhina, L. V.; Matveevskaya, N. A.; Tolmachev, A. V. Interfacial Properties of Cetyltrimethylammonium-coated SiO2 Nanoparticles in Aqueous Media as Studied by using Different Indicator Dyes. Journal of Colloida and Interface Science, 2007, 713-715.
51. Cui, Z. G.; Yang, L. L.; Cui, Y. Z.; Binks, B. P. Effects of Surfactant Structure on the Phase Inversion of Emulsions Stabilized by Mixtures of Silica Nanoparticles and Cationic Surfactant. Langmuir, 2009, 4723.
52. Grigoriev, D.; Miller, R.; Shchukin, D.; Mohwald, H. Interfacial Assembly of Partially Hydrophobic Silica Nanoparticles Induced by Ultrasonic Treatment. Wiley InterScience, No. 4, 2007, 3, 665-671.
53. Yuan, J.; Zhou, S.; Gu, G.; Wu, L. Encapsulation of Organic Pigment Particles with Silica via Sol-Gel Process. Journal of Sol-Gel Science and technology, 2005, 36, 267.
54. Ghosh, S. K. Functional Coatings by Polymer Microencapsulation. Wiley-VCH, 2006, 97-98.
55. Sun, M.; Su, Y.; Mu, C.; Jiang, Z. Improved Antifouling Property of PES Ultrafiltration Membranes using Additive of Silica-PVP Nanocomposite. Ind. Eng. Chem. Res., 2010, 49, 791.
56. Wang, W.; Gu, B.; Liang, L.; Hamilton, W. A. Adsorption and Structural Arrangement of Cetyltrimethylammonium Cations at the Silica Nanoparticle-Water Interface. J. Phys. Chem. B., 2004, 108, 17474.
57. Critical Micelle Concentration. BiolinScientific. http://www.attension.com/critical-micelle-concentration (Accessed April 27th, 2012).
58. Xia, H.; Zhang, C.; Wang, Q. Study on Ultrasonic Induced Encapsulating Emulsion Polymerization in the Presence of Nanoparticles. Journal of Applied Polymer Science, Vol. 80, 2001, 1133.
59. Hupkes, J.; Muller, J.; Rech, B. Texture Etched ZnO:Al for Silicon Thin Film Solar Cells. Springer Series in Materials Science, Vol. 104, 2008, 359.
60. Soderstrom, T.; Domine, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F. J.; Fay, S.; Nicolay, S.; Ballif, C. ZnO Transparent Conductive Oxide for Thin Film Silicon Solar Cells. Proceedings of SPIE in San Fransisco, Vol. 7603-9, 2010, 3.
61. Ellmer, K.; Klein, A.; Rech, B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer, 2007, 284-285.
62. Jager, K.; Zeman, M. A Scattering Model for Surface-Textured Thin Film. Applied Physics Letters, 2009, 95, 171108-1.
63. Toyama, T. Topological Characterization for Textured Surfaces of Transparent Conductive Oxides. Applied Physica Express, 2010, 3, 051103.
64. Meier, J.; Spitznagel, J.; Kroll, U.; Bucher, C.; Fay, S.; Moriarty, T.; Shah, A. High-Efficiency Amorphous and “Micromorph” Silicon Solar Cells. Presented at WCPEC-3, Osaka 2003, 1.
65. Meier, J.; Spitzhager, J.; Fay, S.; Bucher, C.; Graf, U.; Kroll, U.; Dubail, S.; Shah, A. Enhanced Light-Trapping for Micromorph Tandem Solar Cells by LP-CVD ZnO. IEEE, 2002, 1118.
66. Krc, J.; Smole, F.; Topic, M. Potential of Light Trapping in Microcrystalline Silicon Solar Cells with textured Substrates. Progress in Photovoltaics: Research and Applications Prog. Photovolt: Res. Appl., 2003, 11, 429.
67. Pillai, H. P.; Krc, J.; Zeman, M. Optical Modeling of a-Si:H Thin Film Solar Cells with Rough Interfaces. Delft University of Technology, 159-161.
68. Poortmans, J.; Arkhipov, V. Thin Film Solar Cells. John Wiley&Sons, Ltd., 2006, 209-211.
69. Ma, Z. Q.; He, B. TCO-Si Based Heterojunction Photovoltaic Devices. Solar Cells-Thin Film Technologies, 2011, 112-113.
70. Murdoch, G. B.; Transparent Conductive Oxides for Organic Electronics. University of Toronto, 2010, 5.
71. Kambe, M.; Matsui, T.; Sai, H.; Taneda, N.; masumo, K.; Takahashi, A.; Ikeda, T.; Oyama, T.; Kondo, M.; Sato, K. Improved Light-Trapping Effect in a-Si:H/μc-Si:H Tandem Solar Cells by using High Haze SnO2:F Thin Films. IEEE, 2009, 001663-001664.
72. MEGlobal.
www.meglobal.biz/media/product_guides/MEGlobal_MEG.pdf (Accessed June 24th, 2012).
73. Ethylene Glycol.
chemistry.about.com/od/factsstructures/ig/Chemical-Structures---E/Ethylene-Glycol.htm (Accessed June 24th, 2012).
74. PVP (Polyvinylpyrrolidone).
online1.ispcorp.com/Brochures/Performance%2520Chemicals/PVP.pdf (Accessed June 24th, 2012).
75. Polyvinylpyrrolidone.
www.diytrade.com/china/pd/1362842/Crosslinked_ Polyvinylpyrrolidone_PVPP.html (Accessed June 24th, 2012).
76. Hexadecyltrimethylammonium Bromide. TCI Europe.
http://www.tcieurope.eu/en/catalog/H0081.html (Accessed June 24th, 2012).
77. Complete Glass&Coating Solutions. Abrisa.
http://abrisa.com/specs/corning.eagle.2000.pdf (Accessed June 24th, 2012).
78. Corning Museum of Glass.
http://www.cmog.org/article/types-glass (Accessed June 24th, 2012).
79. Ultrasonic Cleaner. Tovatech.
http://www.tovatech.com/ultrasonic-cleaner/how-ultrasonics-works.php (Accessed June 25th, 2012).
80. An Introduction to SEMs FEI 430 NanoSem. FEI Company.
ncnc.engineering.ucdavis.edu/pages/equipment/introduction_to_SEM.pdf (Accessed June 25th, 2012).
81. Cheney, B. Introduction to Scanning Electron Microscopy. Materials Engineering department San Jose State University.
www.sjsu.edu/people/anastasia.micheals/courses/MatE143/s1/SEM_GUIDE.pdf (Accessed June 25th, 2012).
82. Transmission Measurements using Integrating Spheres for the LAMBDA 950/850/650 UV/Vis/NIR and UV/Vis Spectrophotometers. PerkinElmer.
shop.perkinelmer.com/content/applicationnotes/app_lambda950850650transmsrmts.pdf (Accessed June 25th, 2012).
83. Ferri, D. UV-Vis Spectroscopy Basic Theory. Empa, Lab. For Solid State Chemistry and Catalysis.
84. McCreary, P. An Advanced Engineering Writing Course Report. 2006, 1-4.
http://paultheengineer.com/writingsamples.html (Accessed June 28th, 2012).
85. Shear-thickening Fluid. http://science.howstuffworks.com/liquid-body-armor1.htm (Accessed June 28th, 2012).
86. Zeta Potential Theory. Nanobiotechnology Center.
87. Ray, A. Micelle Formation in Pure Ethylene Glycol. Journal of the American Chemical Society, Vol. 91, No. 23, 1969, 6511.
88. Warnheim, T. Aggregation of Surfactants in Nonaqueous, Polar Solvents. Current Opinion in Colloid and Interface Science, Vol. 2, Issue 5, 1997, 475-476.

QR CODE