簡易檢索 / 詳目顯示

研究生: 彭志誠
Chih-Cheng Peng
論文名稱: 過渡性金屬硫屬化合物二硫化鉬鈮之晶體成長與特性研究
Crystal Growth and Characterization of Mo1-xNbxS2 Transition Metal Dichalcogenide
指導教授: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
口試委員: 程光蛟
Kwong-Kau Tiong
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: X光繞射拉曼散射電傳導特性2H-3R相轉變半導體-金屬行為轉變二硫化鉬鈮
外文關鍵詞: 2H-3R transition, Semiconductor-metal transition, Mo1-xNbxS2
相關次數: 點閱:308下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以化學汽相傳導法(Chemical vapor transport method),利用碘(Iodine)當作傳導劑成長出Mo1-xNbxS2(0 ≤ x ≤ 1)共21種系列成分化合物之單晶,並對其系列化合物進行相關特性之研究。
其晶體尺寸最大則達到1.5 × 1.5 cm2左右。以六方晶系為單位晶胞,觀察出二硫化鉬屬於2H結構,而二硫化鈮為3R結構。並隨著鈮成分含量愈多,其化合物之晶格常數a有變大趨勢,而晶格常數c有減少趨勢,造成各成分之晶胞體積亦隨之變大。藉由拉曼極化分析於基平面上的拉曼振動模態中觀察出2H與的E2g1、A1g 與3R相的E(TO)、A1(LO)皆存在於Mo1-xNbxS2當中,呈現二次多項式關係的變化趨勢,並且隨著金屬鉬取代鈮的比例增加,振動模態皆往低頻率方向位移,推估是原子間的振動力學常數變小所導致的。
從電傳導特性指出,隨著鈮成分含量愈多,其化合物的導電度呈線性遞增趨勢。同時在20 K~290 K溫度環境下觀察出半導體特性的二硫化鉬,到金屬特性的二硫化鈮之間隨溫度變化的趨勢,同時找出其在Mo0.9Nb0.1S2為半導體轉金屬特性的起始成分化合物。


Single crystals of Mo1-xNbxS2 have been grown by chemical vapor transport method using Iodine as a transport agent. These series platelets up to 1.5×1.5 cm2 surface area and 0.2~0.3 cm in thickness be obtained. X-ray diffraction patterns show two-layered hexagonal primitive unit cell (2H) for molybdenum disulfide and three-layered rhombohedral primitive unit cell (3R) for niobium disulfide. The effect for all niobium-doped samples are an increase in lattice a and a decrease in lattice c, which led to a increase of the cell volumes. The co-existence on basal plane for both 2H-type and 3R-type vibration active-mode were observed by polarization dependent Raman scattering. With substituted Nb concentration increase, all vibration active-mode of series compounds are shifting to low-frequency, which reveal parabolic relation.
Molybdenum disulfide belongs to semiconductor whereas niobium disulfide belongs to metallic compound. It is found that linear trend of conductivity due to doped-Nb concentration increase. Temperature dependent resistivity for each compound shows the progress of semiconductor-metal transition. The critical composition happened on x ≈ 0.1 to transfer from semiconductor to metallic characteristic.

中文摘要 I AbstractII 誌謝 III 圖索引 VI 表索引 IX 第一章 緒論 1 1.1 研究背景 1 1.1.1 二維奈米材料 1 1.1.2 過渡性金屬硫屬化合物 2 1.2 研究主題與方法 5 第二章 晶體成長與結構分析 6 2-1 Mo1-xNbxS2成長之系統配置 6 2.1.1 真空系統 6 2.1.2 長晶反應系統 6 2-2 Mo1-xNbxS2晶體成長之流程 10 2.2.1 原料所需與相關清洗劑 10 2.2.2 石英管清洗作業 12 2.2.3 化合物之初步合成 13 2.2.4 化學汽相傳導法之單晶成長 16 2-3 晶體形貌 18 2-4 X-ray晶格繞射 20 2.4.1 原理與系統 20 2.4.2 粉末X-ray晶格繞射分析 23 2.4.3 結果與討論 30 第三章 量測分析與系統 32 3-1 拉曼散射 32 3.1.1 原理簡介 32 3.1.2 極化分析 34 3.1.3 實驗方法 36 3.1.4 結果與討論 38 3-2 電傳導特性 52 3.2.1 電性量測介紹 52 3.2.2 接點樣品製備 54 3.2.3 實驗方法 54 3.2.4 結果與討論 56 第四章 結論 62 參考文獻 63

[1] M. Lundstrom, “Moore's Law Forever?,” Science, vol. 299, pp. 210-211, 2003.
[2] S. E. Thompson, R. S. Chau, T. Ghani, K. Mistry, S. Tyagi, and M. T. Bohr, “In search of “Forever,” continued transistor scaling one new material at a time,” IEEE Trans. Electron Devices, vol. 18, pp. 26-36, 2005.
[3] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chem. Rev., vol. 113, pp. 3766-98, 2013.
[4] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, “2D materials: to graphene and beyond,” Nanoscale, vol. 3, pp. 20-30, 2011.
[5] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. USA, vol. 102, pp. 10451-10453, 2005.
[6] A. Yaya, B. Agyei-Tuffour, D. Dodoo-Arhin, E. Nyankson, E. Annan, D. S. Konadu, E. Sinayobye and C. P. Ewels, “Layered Nanomaterials - A Review,” G. J. E. D. T. , vol. 1, pp. 32-41, 2012.
[7] V. P. Verma, S. Das, I. Lahiri, and W. Choi, “Large-area graphene on polymer film for flexible and transparent anode in field emission device,” Appli. Phys. Lett., vol. 96, 2010.
[8] S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, et al., “Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy,” ACS Nano, vol. 5, pp. 1321-1327, 2011.
[9] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
[10] D. Pacilé, J. C. Meyer, Ç. Ö. Girit, and A. Zettl, “The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes,” Appl. Phys. Lett., vol. 92, 2008.
[11] L. Lichtenstein, C. Büchner, B. Yang, S. Shaikhutdinov, M. Heyde, M. Sierka, et al., “The Atomic Structure of a Metal-Supported Vitreous Thin Silica Film,” Angew. Chem. Int. Ed., vol. 51, pp. 404-407, 2012.
[12] P. Y. Huang, S. Kurasch, A. Srivastava, V. Skakalova, J. Kotakoski, A. V. Krasheninnikov, et al., “Direct Imaging of a Two-Dimensional Silica Glass on Graphene,” Nano Lett., vol. 12, pp. 1081-1086, 2012.
[13] J. da Rocha Martins and H. Chacham, “Disorder and Segregation in B−C−N Graphene-Type Layers and Nanotubes: Tuning the Band Gap,” ACS Nano, vol. 5, pp. 385-393, 2010.
[14] K. Yuge, “Phase stability of boron carbon nitride in a heterographene structure: A first-principles study,” Phys. Rev. B, vol. 79, p. 144109, 2009.
[15] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, et al., “Atomic layers of hybridized boron nitride and graphene domains,” Nat Mater, vol. 9, pp. 430-435, 2010.
[16] A. Guinier, G. B. Bokij, K. Boll-Dornberger, J. M. Cowley, S. urovič, D. E. Cox, et al., “Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures,” Acta Crystallogr., Sect. A, vol. 40, pp. 399-404, 1984.
[17] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, and KisA, “Single-layer MoS2 transistors,” Nat. Nano, vol. 6, pp. 147-150, 2011.
[18] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett., vol. 11, pp. 5111-5116, 2011.
[19] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, et al., “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science, vol. 331, pp. 568-571, 2011.
[20] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, et al., “Emerging Photoluminescence in Monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010.
[21] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, pp. 193-335, 1969.
[22] C. Ataca, H. Şahin, and S. Ciraci, “Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure,” J. Phys. Chem. C, vol. 116, pp. 8983-8999, 2012.
[23] A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic Properties of Freely Suspended MoS2 Nanosheets,” Adv. Mater., vol. 24, pp. 772-775, 2012.
[24] S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and Breaking of Ultrathin MoS2,” ACS Nano, vol. 5, pp. 9703-9709, 2011.
[25] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, et al., “MoS2 P-type transistors and diodes enabled by high work function MoOx contacts,” Nano Lett., vol. 14, pp. 1337-42, Mar 12 2014.
[26] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, et al., “Single-Layer MoS2 Phototransistors,” ACS Nano, vol. 6, pp. 74-80, 2012/01/24 2011.
[27] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, pp. 699-712, Nov. 2012.
[28] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, et al., “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,” Nano. Lett., vol. 13, pp. 1991-5, May 8 2013.
[29] C. W. Dunnill, I. MacLaren, and D. H. Gregory, “Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry,” Nanoscale, vol. 2, pp. 90-97, 2010.
[30] F. Jellinek, G. Brauer, and H. Muller, “Molybdenum and Niobium Sulphides,” Nature, vol. 185, pp. 376-377, 1960.
[31] V. V. Ivanovskaya, A. Zobelli, A. Gloter, N. Brun, V. Serin, and C. Colliex, “Ab initio study of bilateral doping within the MoS2-NbS2 system,” Phys. Rev. B, vol. 78, p. 134104, 2008.
[32] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-Driven Chemical Vapor Transport Method for Crystal Growth of Transition Metal Dichalcogenides,” Crystal. Growth. Design., vol. 13, pp. 4453-4459, 2013.
[33] M. S. Dave, K. R. Patel, and R. D. Vaidya, “Structural Characterization of NbS2 single Crystals,” J. Phys. Math. Sci., vol. 2 (3), pp. 47-51, July-September 2012.
[34] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana, vol. 63, pp. 611-616, 2004.
[35] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, “Chemical Vapor Transport Reactions – A Historical Review,” Z. Anorg. All. Chem., vol. 639, pp. 219-229, 2013.
[36] U. Hotje and M. Binnewies, “Der Chemische Transport von Mischphasen im System MoS2/MoSe2, MoS2/NbS2, MoSe2/NbSe2 und NbS2/NbSe2,” Z. Anorg. All. Chem., vol. 631, pp. 2467-2474, 2005.
[37] F. Wypych, “Dissulfeto de molibdênio, um material multifuncional e surpreendente,” Química Nova, no. 1, pp. 83-88, 2002.
[38] W. G. McMullan and J. C. Irwin, “Raman scattering from 2H and 3R–NbS2,” Solid State Commun., vol. 45, pp. 557-560, 1983.
[39] S. Onari, T. Arai, R. Aoki, and S. Nakamura, “Raman scattering in 3RNbS2,” Solid State Commun., vol. 31, pp. 577-579, 1979.
[40] D. O. Dumcenco, K. Y. Chen, Y. P. Wang, Y. S. Huang, and K. K. Tiong, “Raman study of 2H-Mo1−xWxS2 layered mixed crystals,” J. Alloys Compd., vol. 506, pp. 940-943, 2010.
[41] C. Ramana, U. Becker, V. Shutthanandan, and C. Julien, “Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics,” Geochem. Trans., vol. 9, p. 8, 2008.
[42] S. Nakashima, Y. Tokuda, A. Mitsuishi, R. Aoki, and Y. Hamaue, “Raman scattering from 2H-NbS2 and intercalated NbS2,” Solid State Commun., vol. 42, pp. 601-604, 1982.

QR CODE