簡易檢索 / 詳目顯示

研究生: 王星強
Hsing-chiang Wang
論文名稱: 多層薄膜氧化鋅焦電感測器之殘留應力分析
Study on residual sresses within multilayer ZnO pyroelectric sensor
指導教授: 趙振綱
Ching-kong Chao
口試委員: 李維楨
Wei-chen Lee
張瑞慶
Rwei-ching Chang
蕭俊卿
Chun-ching Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧化鋅焦電感測器焦電效應焦電響應薄膜殘留應力X光繞射儀
外文關鍵詞: Thin-film ZnO pyroelectric sensor, Pyroelectric effect, Responsivity, Residual stress, X-ray Diffraction
相關次數: 點閱:207下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 焦電薄膜感測器乃利用焦電效應,將溫度變化轉為焦電訊號。焦電感測器之焦電響應為感測器優劣之重要指標,其中影響焦電響應主要因素為焦電薄膜品質,而薄膜品質與薄膜之表面形貌、晶格結構及殘留應力等息息相關。本文使用三種射頻源功率90W、120W及150W進行單階段濺鍍氧化鋅焦電薄膜,及此三種射頻源功率構成三種組合以雙階段濺鍍技術沈積氧化鋅焦電薄膜。氧化鋅焦電薄膜感測器主要利用微機電製程製作,其中包含背面蝕刻窗型孔;以LPCVD來沈積氮化矽隔熱層;電子束蒸鍍機沈積上下電極層;及濺鍍機沈積氧化鋅焦電薄膜。焦電感測器量測方式主要以氦氖雷射,搭配斷波器控制紅外線的頻率,來量測焦電感測器的電壓響應。且使用X射線繞射儀(XRD)及掃描式電子顯微鏡(SEM),來探查氧化鋅薄膜的晶體結構及表面形貌;及奈米壓痕儀來檢測氧化鋅薄膜機械性質;再以3D表面輪廓儀,量測感測器上各薄膜層製程前後曲率變化情況,並利用參差應變配合梁理論發展多層薄膜結構之殘留應力數學模型,藉由各薄膜之厚度、彈性係數及曲率變化,並配合數學模型探討焦電薄膜感測器結構上,各薄膜層之應力狀態。
    就感測器設計而言,部份電極之焦電感測器已證實比全覆蓋電極之焦電感測器有優良之焦電響應,主要因未覆蓋的焦電感測器中,裸露氧化鋅薄膜有助於增加吸收外在能量。故本文提出四種不同上電極形狀設計,分別為全覆蓋型、靶狀型、十字型及網狀型,對焦電感測器進行優化,試圖再提升焦電響應,其中以網狀型上電極所製造之焦電感測器獲得較佳之焦電響應。另外以陣列串接方式,提出新型焦電感測器設計,已大幅提升焦電響應。
    氧化鋅焦電薄膜感測器之電壓響應與上電極形狀、氧化鋅薄膜表面形貌、晶格結構及殘留應力相關。雙階段濺鍍氧化鋅薄膜中,以 120W配合150W所製作之感測器的電壓響應最為優異且氧化鋅薄膜具有極佳c-axis取向之結晶結構,但其氧化鋅焦電層之殘留應力具有較高壓應力,藉由X射繞射儀及掃描式電子顯微鏡量測結果,此應力將有助氧化鋅薄膜形成較緻密及較佳之薄膜品質,並進而提升焦電感測器之電壓響應。


    Thin-film ZnO pyroelectric sensors use the pyroelectric effect to convert temperature variation to corresponding electrical signal. The quality of ZnO films is a key factor to determine the responsivity of ZnO pyroelectric sensors, which can be influenced by the morphology, the crystal structure and the residual stress of ZnO films. The ZnO pyroelectric sensor is a multilayer structure and fabricated by the procedure of MEMS fabrication included backside-etching windows, deposition of isolation layer by LPCVD, deposition of top and bottom electrodes by e-beam evaporator, and sputtering of ZnO films with 500 nm thickness under three various RF powers as 90W, 120W, 150W, and two-step sputtering technique. A calibrated He-Ne laser and a mechanical chopper producing a modulated frequency are used to measure the voltage responsivity of ZnO pyroelectric sensors. In addition, XRD(X-ray Diffraction) and SEM(scanning electron microscope) are used to examine the morphology, the crystal structure of ZnO films. The data from curvature variation of each layer before and after deposited, thickness, Poisson’s ratio and Young’s modulus of each film are used to estimate the residual stress existed in each layer of multilayer ZnO pyroelectric sensor through a multilayer analytical model used.
    Pyroelectric sensor with partially covered electrode (PCE) has been proved to reveal higher responsivity than that with fully covered electrode. The uncovered ZnO thin film directly exposes surface to increase the absorption of incident energy in PCE pyroelectric sensor. Therefore, the design of top electrode is greatly to influence the temperature field in pyroelectric films. Top electrodes with four shapes namely crisscross, target, web and full cover types, are used to discuss the relation between electrode shapes and responsivity of devices. The pyroelectric sensor with top electrode of web shape can enhance the responsivity of sensor. In addition, an array consisted of four ZnO pyroelectric sensors with a series connection is also produced and attempted to improve the responsivity of sensors.
    The results of current work present that the voltage responsivity of ZnO pyroelectric sensor is significantly related to the residual stress, the morphology, the crystal structure of ZnO films. Obviously, the ZnO film sputtered by the two-step sputtering technique with a lower-power step (120W) followed by a higher-power step (150W) can significantly improve the responsivity of the ZnO pyroelectric sensor, which possesses a high compression stress, the growth characteristic of strongly preferred orientation toward the c-axis and more compact crystal structure.

    摘 要----------------------------------------------------------------------I Abstract---------------------------------------------------------------------II 誌 謝--------------------------------------------------------------------III 目 錄---------------------------------------------------------------------IV 圖表索引---------------------------------------------------------------------VI 第一章 緒論----------------------------------------------------------------1 1-1 研究背景與動機------------------------------------------------------1 1-2 文獻回顧------------------------------------------------------------4 1-3 研究目的------------------------------------------------------------9 第二章 理論介紹-----------------------------------------------------------20 2-1 紅外線輻射---------------------------------------------------------20 2-2 焦電效應-----------------------------------------------------------21 2-3 焦電響應-----------------------------------------------------------22 2-4 多層薄膜殘留應力數學模型-------------------------------------------25 2-5 奈米壓痕法---------------------------------------------------------32 2-6 X-ray繞射儀-------------------------------------------------------35 第三章 焦電感測器之製作---------------------------------------------------47 3-1 焦電感測器之設計---------------------------------------------------47 3-2 焦電感測器之製程步驟-----------------------------------------------48 3-3 焦電感測器之製程參數-----------------------------------------------52 3-4 陣列式焦電感測器之設計及製程---------------------------------------56 第四章 量測與分析---------------------------------------------------------68 4-1 訊號量測之電路板製作-----------------------------------------------68 4-2 焦電訊號量測-------------------------------------------------------69 4-3 氧化鋅表面型貌分析-------------------------------------------------71 4-4 以XRD量測氧化鋅薄膜晶格--------------------------------------------72 4-5 焦電感測器之薄膜殘留應力分析---------------------------------------73 4-6 陣列式焦電感測器---------------------------------------------------74 第五章 結論----------------------------------------------------------------95 5-1 結論---------------------------------------------------------------95 5-2 未來方向-----------------------------------------------------------96 參考文獻---------------------------------------------------------------------98 作者簡介--------------------------------------------------------------------103

    [1] 張君偉,“雙階段濺鍍技術於氧化鋅焦電感測器響應之影響”,台灣科技大學機械工程系碩士論文,2007。
    [2] 曾增春,“溫度量測學”,科技圖書股份有限公司,1983。
    [3] Sze, S. M., “semiconductor sensor,” John Wiley & Sons, Inc, 1994.
    [4] 劉俊廷,“砷化銦金屬絕緣體半導體電容與紅外線光偵檢器之研究”,國立台灣大學電機工程研究所碩士論文,1998。
    [5] 巫瑞琪,“輻射溫度計”, 國立中央大學光電科學研究所碩士論文,1996。
    [6] Rogalski, A., “Infrared detectors:status and trends,” Progress in Quantum Electronics, 27, 2-3, 59-210, 2003.
    [7] Müller, M., Budde, W., Gottfried, A., Huebel, R., Jähne, R., and Kück, H., “A Thermoelectric Infrared Radiation Sensor with Monolithically Integrated Amplifier Stage and Temperature Sensor,” Sensors and Actuators A, 54, 601-605, 1996.
    [8] Lenggenhager, R., “CMOS Thermoelectric Infrared Sensors,” Physical Electronics Laboratory, ETHZ, Zurich, Diss. ETH No. 10744, 1994.
    [9] 邱建智,“焦電感測元件之製作及特性分析”,國立中山大學電機工程研究所碩士論文,1998。
    [10] Dillner, U., “Thermal Simulation and Realization of Micromachined Thermal Sensor Arrays,” Proceedings of 5th NEXUSPAN Workshop on Thermal Aspects in Microsystem Technology, Budapest, 133-141, 1998.
    [11] Feng, C. S. and Xu, P. M., “The detection mechanism of LiTaO type II pyroelectric detectors: I. The Primary and secondary pyroelectric effects,” Infrared Physics & Technology, 40, 61-70, 1999.
    [12] Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., “Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3, and PbZrTiO3 ferroelectric thin films,” Ferroelectrics, 118, 325-342, 1991.
    [13] Choi, J. R. and Polla, D., “Integration of microsensors in GaAs MESFET process,” Journal of Micromechanics and Microengineering, 3, 60-64, 1993.
    [14] Chang, C. C. and Tang, C. S., “An integrated pyroelectric infrared sensor with PZT thin film,” Sensors and Actuators A, 65, 171-174, 1998.
    [15] No, K., Choi, C. G., Yoon, D. S., Sung, T. H., Kim, Y. C., Jeong, I. S., and Lee, W. J., “Pyroelectric properties of Sol-Gel Derived Lanthanum Modified Lead Titanate Thin Films,” Japan Journal of applied Physics, 35, 2731-2733, 1996.
    [16] Setiadi, D., Regtien, P. P. L., “A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments,” Sensors and Actuators A, 46/47, 408-412, 1995.
    [17] Whatmore, R. W., “Pyroelectric devices and materials,” Rep. Prog. Phys., 49, 1335-1386, 1986.
    [18] Lienhard, D., Heepmann, F., and Ploss, B., “Thin nickel films as absorbers in pyroelectric sensor arrays,” Microelectronic Engineering, 29, 101-104, 1995.
    [19] Ye, C. P., Tamagawa, T., and Polla, D. L., “Experimental Studies on Primary and Secondary Pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin Film,” Journal of Applied Physics, 70, 10, 5538-5543, 1991.
    [20] Chong, N., Chan, H. L. W., and Choy, C. L., “Pyroelectric Sensor Array for In-line Monitoring of Infrared Laser,” Sensors and Actuators A, 96, 231-238, 2002.
    [21] Ho, J. J., Fang Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Ju, M. S., Huang, S. B., Wu, Kun-Hsien, and Chen, C. Y., “The Dynamic Response Analysis of a Pyroelectric Thin-Film Infrared Sensor with Thermal Isolation Improvement Structure,” IEEE TRANSACTIONS ON ELECTRON DEVICES, 46, 12, 2289-2294, 1999.
    [22] Ho, J. J., Fang, Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Lee, K. H., Hsieh, M. C., Chang, C. P., and Wu, K. H., “Analysis of Substrate Effects on the Response of Pyroelectric Thin-film Infrared Sensors,” Microscale Thermophysical Engineering, 3, 4, 263-272, 1999.
    [23] Cicco, G. D. , Morten, B., Dalmonego, D., and Prudenziati, M., “Pyroelectricity of PZT-based thick-films,” Sensors and actuators, 76, 409-415, 1999.
    [24] Youngman Kim, Choo, S. H., “Measurements of residual stress in the thin film micro-gas sensor containing metallic layers,” Thin Solid Films, 394, 284-291, 2001.
    [25] Tsui, Y. C., Clyne, T. W., “An analytical model for predicting residual stresses in progressively deposited coatings Part 1: Planar geometry,” Thin Solid Films, 306, 23-33, 1997.
    [26] Park, S. H., Seo, B. C., Park, H. D. and Yoon, G., “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications,” Jpa. J. Appl. Phys, 39, 4115-4119, 2000.
    [27] Hsu, Y. H., Lin, J., Tang, W. C., “RF sputtered piezoelectric zinc oxide thin film for transducer applications,” Journal of Materials Science: Materials in Electronics, 19, 653-661, 2008.
    [28] Won Taeg Lim, Chang Hyo Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films, 353, 12-15, 1999.
    [29] Weiguo L., Jong Soo K., Weiguang Z., “Substrate effects on the properties of the pyroelectric thin film IR detectors,” Sensors and Actuators A, 93, 117-122, 2001.
    [30] Wei, C. S., Lin, Y. Y., Hu, Y. C., Wu, C. W., Shih, C. K., Huang, C. T., and Chang, S. H., “Partial-electroded ZnO pyroelectric sensors for responsivity improvement,” Sensors and actuators, 128, 18-24, 2006.
    [31] Tjhen, W., Tamagawa, T., Ye, C. P., Hsueh, C. C., Schiller, P., and Polla, D. L., “Properties of Piezoelectric Thin Films for Micromechanical Devices and Systems,” Proceedings of IEEE Micro Electro Mechanical Systems, 4, 114-119, 1991.
    [32] Madou, M. J., “Fundamentals of microfabrication,” CRC Press, 2nd ed., 2002.
    [33] Yoon, Y. S., Samoilov, V. B., and Kletsky, S. V., “Dnamic response Analysis of Pyroelectric Sensitive Element for Thermal Imaging,” IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control, 50, 4, 461-465, 2003.
    [34] Kohil, M., Wuethrich, C., Brooks, K., Willing, B., Forster, M., Mmuralt, P., Setter, N., and Ryser, P., “Pyroelectric thin-film sensor array,” Sensors and Actuators, A, Physical, 60, 1-3, 147-153, 1997.
    [35] 陳靜怡, “氧化鋅中介層對ITO透明導電膜性質之影響”,國立成功大學材料科學及工程學系碩士論文,2002。
    [36] 莊達人,“VLSI製造技術”,高立圖書, 38-39, 2001.
    [37] Stoney, G. G., “The tension of metallic films deposited by electrolysis,” Proceeding The Royal of Society London, 82, 172-175, 1909.
    [38] 孫長恩,“以奈米壓痕法及刮痕法探討蒸鍍薄膜之機械性質”,聖約翰技術學院自動化及機電整合研究所碩士論文,2004。
    [39] 張瑞慶,”奈米壓痕技術與應用”,力學學會會訊,114,2006。
    [40] Nix, W. D., and Gao, H., Indentation size effects in crystalline: a few for strain gradient plasticy, J. Mech. Phys. Solids. 3, 46, 411-425, 1998.
    [41] Sang, H. J., Jae K. K., and Byung T. L., “Effects of growth conditions on the emission properties of ZnO films prepared on Si(100) RF magnetron sputtering.” Journal of applied Physics, 36, 2017-2020, 2003.
    [42] Beegan, D., Chowdhury, S., Laugier, M. T., The nanoindentation behaviour of hard and soft films on silicon substrates, Thin Solid Films, 466, 167-174, 2004.
    [43] Kramer, D. E., Volinsky, A. A., Moody, N. R., Gerberich, W. W., Substrate effects on indentation plastic zone development in thin soft films, Journal of Materials Research, 16(11), 3150-3157, 2001.
    [44] Fischer-Cripps A. C., Review of analysis methods for sub-micron indentation testing, Vacuum, 58(4), 569-585, 2000.

    QR CODE