簡易檢索 / 詳目顯示

研究生: 陳俊翔
Jiun-Xiang Chen
論文名稱: 利用可控制球磨法一步驟製備異原子摻雜石墨烯及其石墨烯增強拉曼散射光譜應用
One-step and controllable synthesis of heteroatom-doped graphene nanosheets by mechanochemical ball-milling for graphene-enhanced Raman scattering
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 葉禮賢
Li-Hsien Yeh
劉沂欣
Yi-Hsin Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 140
中文關鍵詞: 取代摻雜摻雜石墨烯球磨法石墨烯增強拉曼散射
外文關鍵詞: heteroatom-doped graphene, graphene-enhanced Raman scattering
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,石墨烯材料被大量地研究以及產品化,因為石墨烯本身具有優越的性質,如質量很輕、耐酸鹼、良好的導電與導熱的特性,可被用來發展在複合材料、生醫工程、電子元件、太陽能電池及感測器上等等,但石墨烯因為有零價帶的特性,讓材料的應用受到了限制,那根據最近的實驗研究表明,利用摻雜原子的方式形成具有異原子的摻雜石墨烯,而摻雜石墨烯除了有獨特的電子特性之外,上述所說的應用領域也被發展得更廣更遠,那本文所應用在的石墨烯增強拉曼散射(GERS)是近年來被廣為討論及研究的領域。利用摻雜石墨烯獨特的sp2結構以及摻雜結構,使待測物分子吸附在摻雜石墨烯後,因為化學機制導致可以得到增強的拉曼信號,再來,因為摻雜異原子的關係,使摻雜石墨烯不具有零價帶的特性而且還調整了費米能階的位置,在藉由適當的拉曼雷射光,也可以得到增強的拉曼信號。所以說,摻雜石墨烯非常適合應用在石墨烯增強拉曼散射上面。然而,目前異原子摻雜石墨烯片的合成方法通常很繁雜也很耗時,難以實現工業規模生產。因此,如何開發簡單且可控的方式合成異原子摻雜石墨烯片將會導致科學領域以及應用層面上會有很重要的突破。在這裡,我們透過球磨法以機械化學的方式剝離石墨,它的原理是提供足夠的能量來削弱石墨層與層之間的凡德瓦力並促進異原子能嵌入石墨烯中。本文將會合成具有不同摻雜類型且可控制摻雜濃度的數層摻雜石墨烯,並進行詳細的材料鑑定並在最後提出我們所製備的異原子摻雜石墨烯確實可以提供拉曼訊號增強的結果。


Recent theoretical and experimental studies have suggested that heteroatom-doped graphene nanosheets as emerging materials with exceptional optoelectronic properties for applications including nanoelectronics, energy storage, fuel cells, and electrochemical sensing. Besides those applications, graphene-enhanced Raman scattering (GERS) is a new phenomenon and has attracted intense interest recently. Because of the unique 2D heteroatom-doped sp2 carbon structure, graphene provides particularly enhanced Raman signals for molecules adsorbed on its surface. However, current synthesis methods of heteroatom-doped graphene nanosheets usually involve complicated vacuum systems and time-consuming process, making it difficult to enable industrial-scale production. Consequently, the development of a facile and controllable synthesis of heteroatom-doped graphene nanosheets will lead to important advances on both scientific studies and innovation applications.

Here we report the production of few-layered heteroatom-doped graphene nanosheets with varying dopant types and controlled concentration by an efficient solid phase mechanochemical exfoliation of graphite using ball milling. Ball milling has many advantages, such as time-saving, easy to operate, safe, non-polluting. The physical principle of the ball mill which is provided sufficient energy to weaken the van der Waals interactions and promoted the intercalation of solvent molecules into the graphene sheets within bulk graphites. At this moment, the foreign atom we added will change the graphene original structure and it will improve the electrical properties and enhance the Raman signals. Detailed materials characterizations including transmission electron microscopy, UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and Atomic force microscopy suggest that boron-, nitrogen-, sulfur-, and phosphorus-doped few-layer graphene nanosheets with varying dopant concentrations were successfully prepared. In our work, we successfully confirm that the as-prepared heteroatom-doped graphene nanosheets process the GERS properties.

Abstract i 摘要 ii 致謝 iii Acknowledge iv Content v Table of content vii List of figure vii List of table xvi 1. Introduction 1 1.1 Introduction of graphene nanosheets 1 1.2 Introduction of doped graphene nanosheets 5 1.3 Synthesis of doped graphene nanosheets 8 1.3.1 Chemical vapor deposition (CVD) 10 1.3.2 Ball milling 13 1.3.3 Plasma and other methods 17 1.4 Advanced application of heteroatom-doped graphene nanosheets 18 1.5 Surface-enhanced Raman scattering (SERS) 19 1.6 Graphene-enhanced Raman scattering (GERS) 27 2. Characterization 34 2.1 Raman spectroscopy (Raman) 34 2.2 X-ray photoelectron spectroscopy (XPS) 34 2.3 Scanning electron microscope (SEM) 34 2.4 Transmission electron microscope (TEM) 35 2.5 Model MCP-T610 35 2.6 Ultraviolet-visible spectroscopy (UV-Vis) 35 2.7 Atomic force microscopy (AFM) 35 2.8 Ultraviolet Photoelectron Spectroscopy (UPS) 36 2.9 Four point probe resistivity measurement 36 3. Experiment Section 37 3.1 Experiment chemical 37 3.2 Experiment progress 37 3.2.1 Synthesis of blank graphene nanosheets 37 3.2.2 Synthesis of doped graphene nanosheets 38 3.3 GERS-based substrate preparation 39 3.4 The band gap of doped graphene (Tauc plot) 40 3.5 Adsorption ability of various material toward R6G 40 4. Result and discussion 42 Property of Blank-Graphene / Doped-Graphene 42 4.1 Blank Graphene 43 4.2 Nitrogen doped-graphene 47 4.3 Boron doped-graphene 57 4.4 Sulfur doped-graphene 67 4.5 Phosphorus doped-graphene 77 5. Doped graphene nanosheets as GERS substrate 89 5.1 GERS performance 89 5.2 Adsorption ability effect on GERS 95 5.3 Band structure effect on GERS (Tauc plot、UPS) 103 5.4 Limit of detection of Rhodamine 6G 109 5.5 GERS-based Folic Acid Detection 111 6. Conclusion & Future work 112 7. Reference 113

1. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6: p. 183.
2. Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-24.
3. Neto, A.C., F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
4. Ni, Z., H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, and Z. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano letters, 2007. 7(9): p. 2758-2763.
5. Nair, R.R., P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
6. Guo, B., L. Fang, B. Zhang, and J.R. Gong, Graphene Doping: A Review. Insciences Journal, 2011. 1(2): p. 80-89.
7. Qu, L.T., Y. Liu, J.B. Baek, and L.M. Dai, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. Acs Nano, 2010. 4(3): p. 1321-1326.
8. Wang, X., G. Sun, P. Routh, D.H. Kim, W. Huang, and P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev, 2014. 43(20): p. 7067-98.
9. Agnoli, S. and M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. Journal of Materials Chemistry A, 2016. 4(14): p. 5002-5025.
10. Panchakarla, L.S., K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 2009. 21(46): p. 4726-4730.
11. Rani, P. and V.K. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Adv., 2013. 3(3): p. 802-812.
12. Laref, A., A. Ahmed, S. Bin-Omran, and S.J. Luo, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes. Carbon, 2015. 81: p. 179-192.
13. Farmer, D.B., R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G.S. Tulevski, J.C. Tsang, and P. Avouris, Chemical doping and electron− hole conduction asymmetry in graphene devices. Nano letters, 2008. 9(1): p. 388-392.
14. Oostinga, J.B., H.B. Heersche, X. Liu, A.F. Morpurgo, and L.M. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nature materials, 2008. 7(2): p. 151.
15. Hsieh, D., Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J. Osterwalder, L. Patthey, J. Checkelsky, and N. Ong, A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009. 460(7259): p. 1101.
16. Coletti, C., C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, and U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Physical Review B, 2010. 81(23): p. 235401.
17. Wu, T., H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012. 36(6): p. 1385-1391.
18. Wang, H., Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, and Z. Liu, Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small, 2013. 9(8): p. 1316-1320.
19. Dong, X., D. Fu, W. Fang, Y. Shi, P. Chen, and L.J. Li, Doping single‐layer graphene with aromatic molecules. Small, 2009. 5(12): p. 1422-1426.
20. Gao, H., Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, and P.M. Ajayan, Synthesis of S-doped graphene by liquid precursor. Nanotechnology, 2012. 23(27): p. 275605.
21. Jeon, I.Y., S. Zhang, L. Zhang, H.J. Choi, J.M. Seo, Z. Xia, L. Dai, and J.B. Baek, Edge‐selectively sulfurized graphene nanoplatelets as efficient metal‐free electrocatalysts for oxygen reduction reaction: the electron spin effect. Advanced Materials, 2013. 25(42): p. 6138-6145.
22. Cragg, G.M. and D.J. Newman, Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013. 1830(6): p. 3670-3695.
23. Yu, C., Z. Liu, X. Meng, B. Lu, D. Cui, and J. Qiu, Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016. 8(40): p. 17458-17464.
24. Jeon, I.-Y., Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, M.-J. Kim, and D.W. Chang, Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences, 2012. 109(15): p. 5588-5593.
25. Jeong, H.M., J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano letters, 2011. 11(6): p. 2472-2477.
26. Wu, Z.-S., W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS nano, 2011. 5(7): p. 5463-5471.
27. Yang, S., L. Zhi, K. Tang, X. Feng, J. Maier, and K. Müllen, Efficient synthesis of heteroatom (N or S)‐doped graphene based on ultrathin graphene oxide‐porous silica sheets for oxygen reduction reactions. Advanced Functional Materials, 2012. 22(17): p. 3634-3640.
28. Li, N., Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 2010. 48(1): p. 255-259.
29. Panchakarla, L.S., K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, and C.N.R. Rao, Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced Materials, 2009. 21(46): p. 4726-4730.
30. Chang, C.-K., S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang, J.-Y. Hwang, K.-J. Huang, W.-H. Yang, S.-B. Wang, and C.-H. Chuang, Band gap engineering of chemical vapor deposited graphene by in situ BN doping. Acs Nano, 2013. 7(2): p. 1333-1341.
31. Wei, D., Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752-1758.
32. Teng, C., D. Xie, J. Wang, Z. Yang, G. Ren, and Y. Zhu, Ultrahigh Conductive Graphene Paper Based on Ball‐Milling Exfoliated Graphene. Advanced Functional Materials, 2017. 27(20): p. 1700240.
33. Buzaglo, M., I.P. Bar, M. Varenik, L. Shunak, S. Pevzner, and O. Regev, Graphite-to-Graphene: Total Conversion. Adv Mater, 2017. 29(8): p. 1603528.
34. Jeon, I.Y., H.J. Choi, M. Choi, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L. Zhang, Z. Xia, L. Dai, N. Park, and J.B. Baek, Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep, 2013. 3: p. 1810.
35. Jeon, I.-Y., H.-J. Choi, M.J. Ju, I.T. Choi, K. Lim, J. Ko, H.K. Kim, J.C. Kim, J.-J. Lee, and D. Shin, Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific reports, 2013. 3: p. 2260.
36. Wang, Z., Y. Lu, H. Yuan, Z. Ren, C. Xu, and J. Chen, Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015. 7(48): p. 20743-20748.
37. Li, X., H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, and H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 2009. 131(43): p. 15939-15944.
38. Niu, F., L.-M. Tao, Y.-C. Deng, Q.-H. Wang, and W.-G. Song, Phosphorus doped graphene nanosheets for room temperature NH 3 sensing. New Journal of Chemistry, 2014. 38(6): p. 2269-2272.
39. Maiti, U.N., W.J. Lee, J.M. Lee, Y. Oh, J.Y. Kim, J.E. Kim, J. Shim, T.H. Han, and S.O. Kim, 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced materials, 2014. 26(1): p. 40-67.
40. Mark Wall, P.D., Thermo Scientific, Madison, Wi, USA, The Raman Spectroscopy of Graphene and the determination of layer thickness.pdf.
41. Butler, H.J., L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, M.J. Walsh, M.R. McAinsh, N. Stone, and F.L. Martin, Using Raman spectroscopy to characterize biological materials. Nat Protoc, 2016. 11(4): p. 664-87.
42. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
43. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20.
44. Sharma, B., R.R. Frontiera, A.-I. Henry, E. Ringe, and R.P. Van Duyne, SERS: Materials, applications, and the future. Materials Today, 2012. 15(1-2): p. 16-25.
45. Natan, M.J., Concluding remarks - Surface enhanced Raman scattering. Faraday Discussions, 2006. 132: p. 321-328.
46. Lin, X.M., Y. Cui, Y.H. Xu, B. Ren, and Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and Bioanalytical Chemistry, 2009. 394(7): p. 1729-1745.
47. Hu, C., Y. Liu, J. Qin, G. Nie, B. Lei, Y. Xiao, M. Zheng, and J. Rong, Fabrication of Reduced Graphene Oxide and Sliver Nanoparticle Hybrids for Raman Detection of Absorbed Folic Acid: A Potential Cancer Diagnostic Probe. ACS Applied Materials & Interfaces, 2013. 5(11): p. 4760-4768.
48. Chen, Y.-W., T.-Y. Liu, P.-J. Chen, P.-H. Chang, and S.-Y. Chen, A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets. Small, 2016. 12(11): p. 1458-1468.
49. Guo, Y., H. Wang, X. Ma, J. Jin, W. Ji, X. Wang, W. Song, B. Zhao, and C. He, Fabrication of Ag–Cu2O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing. ACS Applied Materials & Interfaces, 2017. 9(22): p. 19074-19081.
50. Qu, L., N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T.P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P.M. Ajayan, Gold Nanoparticles and g-C3N4-Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017. 27(31): p. 1701714.
51. Nguyen, T.H.D., Z. Zhang, A. Mustapha, H. Li, and M. Lin, Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2014. 62(43): p. 10445-10451.
52. Cabrera, F.C., P.H.B. Aoki, R.F. Aroca, C.J.L. Constantino, D.S. dos Santos, and A.E. Job, Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS. Journal of Raman Spectroscopy, 2012. 43(4): p. 474-477.
53. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97.
54. Kneipp Katrin, Harald Kneipp, and Irving Itzkan, Surface-enhanced Raman scattering and biophysics. JOURNAL OF PHYSICS: Condensed Matter, 2002: p. R597-R624.
55. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev, 2008. 37(5): p. 1061-73.
56. Vivoni, A., R.L. Birke, R. Foucault, and J.R. Lombardi, Ab initio frequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface. The Journal of Physical Chemistry B, 2003. 107(23): p. 5547-5557.
57. Wu, D.Y., S. Duan, B. Ren, and Z.Q. Tian, Density functional theory study of surface‐enhanced Raman scattering spectra of pyridine adsorbed on noble and transition metal surfaces. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2005. 36(6‐7): p. 533-540.
58. Cardini, G. and M. Muniz-Miranda, Density functional study on the adsorption of pyrazole onto silver colloidal particles. The Journal of Physical Chemistry B, 2002. 106(27): p. 6875-6880.
59. Cardini, G., M. Muniz-Miranda, M. Pagliai, and V. Schettino, A density functional study of the SERS spectra of pyridine adsorbed on silver clusters. Theoretical Chemistry Accounts, 2007. 117(3): p. 451-458.
60. Feng, S., M.C. dos Santos, B.R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A.L. Elías, Y. Lei, N. Perea-López, and M. Endo, Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science advances, 2016. 2(7): p. e1600322.
61. Lombardi, J.R., R.L. Birke, T. Lu, and J. Xu, Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. The Journal of chemical physics, 1986. 84(8): p. 4174-4180.
62. Barros, E.B. and M.S. Dresselhaus, Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy. Physical Review B, 2014. 90(3): p. 035443.
63. Arenas, J.F., D.J. Fernández, J. Soto, I. López-Tocón, and J.C. Otero, Role of the Electrode Potential in the Charge-Transfer Mechanism of Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry B, 2003. 107(47): p. 13143-13149.
64. Xie, L., X. Ling, Y. Fang, J. Zhang, and Z. Liu, Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society, 2009. 131(29): p. 9890-9891.
65. Ling, X., L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, and Z. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett, 2010. 10(2): p. 553-61.
66. Huang, S., X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M.S. Dresselhaus, Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett, 2015. 15(5): p. 2892-901.
67. Ling, X. and J. Zhang, First‐Layer Effect in Graphene‐Enhanced Raman Scattering. Small, 2010. 6(18): p. 2020-2025.
68. Ling, X., J. Wu, W. Xu, and J. Zhang, Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy. Small, 2012. 8(9): p. 1365-1372.
69. Huang, S., X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M.S. Dresselhaus, Molecular selectivity of graphene-enhanced Raman scattering. Nano letters, 2015. 15(5): p. 2892-2901.
70. Ling, X., J. Wu, L. Xie, and J. Zhang, Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2013. 117(5): p. 2369-2376.
71. Xu, H., L. Xie, H. Zhang, and J. Zhang, Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS nano, 2011. 5(7): p. 5338-5344.
72. Huh, S., J. Park, Y.S. Kim, K.S. Kim, B.H. Hong, and J.-M. Nam, UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS nano, 2011. 5(12): p. 9799-9806.
73. Ling, X., S. Huang, S. Deng, N. Mao, J. Kong, M.S. Dresselhaus, and J. Zhang, Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res, 2015. 48(7): p. 1862-70.
74. Deng, S., W. Xu, J. Wang, X. Ling, J. Wu, L. Xie, J. Kong, M.S. Dresselhaus, and J. Zhang, Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation. Nano Research, 2014. 7(9): p. 1271-1279.
75. Lai, H., F. Xu, Y. Zhang, and L. Wang, Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. Journal of Materials Chemistry B, 2018. 6(24): p. 4008-4028.
76. Wang, Z., S. Wu, L. Colombi Ciacchi, and G. Wei, Graphene-based nanoplatforms for surface-enhanced Raman scattering sensing. Analyst, 2018. 143(21): p. 5074-5089.
77. Majdalawieh, A., M.C. Kanan, O. El-Kadri, and S.M. Kanan, Recent advances in gold and silver nanoparticles: synthesis and applications. Journal of nanoscience and nanotechnology, 2014. 14(7): p. 4757-4780.
78. Yi, N., C. Zhang, Q. Song, and S. Xiao, A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. Scientific reports, 2016. 6: p. 25134.
79. Wang, Y., L. Polavarapu, and L.M. Liz-Marzán, Reduced graphene oxide-supported gold nanostars for improved SERS sensing and drug delivery. ACS applied materials & interfaces, 2014. 6(24): p. 21798-21805.
80. Xue, X., F. Wang, and X. Liu, One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society, 2008. 130(11): p. 3244-3245.
81. Bera, R.K., A.K. Das, and C.R. Raj, Enzyme-cofactor-assisted photochemical synthesis of Ag nanostructures and shape-dependent optical sensing of Hg (II) ions. Chemistry of Materials, 2010. 22(15): p. 4505-4511.
82. Ding, X., L. Kong, J. Wang, F. Fang, D. Li, and J. Liu, Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS applied materials & interfaces, 2013. 5(15): p. 7072-7078.
83. Lin, D., T. Qin, Y. Wang, X. Sun, and L. Chen, Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS applied materials & interfaces, 2014. 6(2): p. 1320-1329.
84. Lin, T.-W., H.-Y. Wu, T.-T. Tasi, Y.-H. Lai, and H.-H. Shen, Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle–graphene oxide nanocomposites. Physical Chemistry Chemical Physics, 2015. 17(28): p. 18443-18448.
85. Dresselhaus, M.S., G. Dresselhaus, and M. Hofmann, Raman spectroscopy as a probe of graphene and carbon nanotubes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008. 366(1863): p. 231-236.
86. Cançado, L.G., A. Jorio, E.M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, and A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano letters, 2011. 11(8): p. 3190-3196.
87. Fang, H., C. Yu, T. Ma, and J. Qiu, Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chemical Communications, 2014. 50(25): p. 3328-3330.
88. Yu, X. and H.S. Park, Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014. 77: p. 59-65.
89. Laref, A., A. Ahmed, S. Bin-Omran, and S. Luo, First-principle analysis of the electronic and optical properties of boron and nitrogen doped carbon mono-layer graphenes. Carbon, 2015. 81: p. 179-192.
90. Yu, X., H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J. Hou, Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS nano, 2011. 5(2): p. 952-958.
91. Zhang, M., Y. Leng, J. Huang, J. Yu, Z. Lan, and C. Huang, Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments. Applied Surface Science, 2017. 425: p. 654-662.
92. Wang, L., Y. Zhang, Y. Yang, and J. Zhang, Strong dependence of surface enhanced raman scattering on structure of graphene oxide film. Materials, 2018. 11(7): p. 1199.
93. Zhang, K., S. Yu, B. Jv, and W. Zheng, Interaction of Rhodamine 6G molecules with graphene: a combined computational–experimental study. Physical Chemistry Chemical Physics, 2016. 18(41): p. 28418-28427.
94. Xu, W., N. Mao, and J. Zhang, Graphene: a platform for surface-enhanced Raman spectroscopy. Small, 2013. 9(8): p. 1206-24.
95. Kang, L., J. Chu, H. Zhao, P. Xu, and M. Sun, Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. Journal of Materials Chemistry C, 2015. 3(35): p. 9024-9037.
96. Kumar, V., V. Singh, S. Umrao, V. Parashar, S. Abraham, A.K. Singh, G. Nath, P.S. Saxena, and A. Srivastava, Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. Rsc Advances, 2014. 4(40): p. 21101-21107.
97. Duvenhage, M.-M., M. Ntwaeaborwa, H.G. Visser, P.J. Swarts, J.C. Swarts, and H.C. Swart, Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs. Optical Materials, 2015. 42: p. 193-198.
98. Poorali, M.-S. and M.-M. Bagheri-Mohagheghi, Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: optimization of the structural properties and tuning of energy band gap. Journal of Materials Science: Materials in Electronics, 2016. 27(1): p. 260-271.
99. Ren, P., E. Pu, D. Liu, Y. Wang, B. Xiang, and X. Ren, Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy. Materials Letters, 2017. 204: p. 65-68.
100. Lv, R., Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz-Silva, H.R. Gutiérrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012. 2: p. 586.
101. Yang, L., J. Hu, L. He, J. Tang, Y. Zhou, J. Li, and K. Ding, One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chemical Engineering Journal, 2017. 327: p. 694-704.

無法下載圖示 全文公開日期 2024/07/08 (校內網路)
全文公開日期 2029/07/08 (校外網路)
全文公開日期 2029/07/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE